Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephislim | Structured version Visualization version GIF version |
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephislim | ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 8788 | . 2 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | cardlim 8681 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴))) | |
3 | alephcard 8776 | . . . 4 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
4 | 3 | sseq2i 3593 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴)) |
5 | limeq 5652 | . . . 4 ⊢ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))) | |
6 | 3, 5 | ax-mp 5 | . . 3 ⊢ (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)) |
7 | 2, 4, 6 | 3bitr3i 289 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴)) |
8 | 1, 7 | bitri 263 | 1 ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 Oncon0 5640 Lim wlim 5641 ‘cfv 5804 ωcom 6957 cardccrd 8644 ℵcale 8645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-oi 8298 df-har 8346 df-card 8648 df-aleph 8649 |
This theorem is referenced by: alephreg 9283 pwcfsdom 9284 |
Copyright terms: Public domain | W3C validator |