MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephislim Structured version   Visualization version   GIF version

Theorem alephislim 8789
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephislim (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))

Proof of Theorem alephislim
StepHypRef Expression
1 alephgeom 8788 . 2 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
2 cardlim 8681 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴)))
3 alephcard 8776 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
43sseq2i 3593 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴))
5 limeq 5652 . . . 4 ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)))
63, 5ax-mp 5 . . 3 (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))
72, 4, 63bitr3i 289 . 2 (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴))
81, 7bitri 263 1 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wss 3540  Oncon0 5640  Lim wlim 5641  cfv 5804  ωcom 6957  cardccrd 8644  cale 8645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649
This theorem is referenced by:  alephreg  9283  pwcfsdom  9284
  Copyright terms: Public domain W3C validator