HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   GIF version

Theorem adj1 28176
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))

Proof of Theorem adj1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 28129 . . . . . . 7 Fun adj
2 funfvop 6237 . . . . . . 7 ((Fun adj𝑇 ∈ dom adj) → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
31, 2mpan 702 . . . . . 6 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
4 dfadj2 28128 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))}
53, 4syl6eleq 2698 . . . . 5 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))})
6 fvex 6113 . . . . . 6 (adj𝑇) ∈ V
7 feq1 5939 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
8 fveq1 6102 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑦) = (𝑇𝑦))
98oveq2d 6565 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑥 ·ih (𝑧𝑦)) = (𝑥 ·ih (𝑇𝑦)))
109eqeq1d 2612 . . . . . . . . 9 (𝑧 = 𝑇 → ((𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
11102ralbidv 2972 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
127, 113anbi13d 1393 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦))))
13 feq1 5939 . . . . . . . 8 (𝑤 = (adj𝑇) → (𝑤: ℋ⟶ ℋ ↔ (adj𝑇): ℋ⟶ ℋ))
14 fveq1 6102 . . . . . . . . . . 11 (𝑤 = (adj𝑇) → (𝑤𝑥) = ((adj𝑇)‘𝑥))
1514oveq1d 6564 . . . . . . . . . 10 (𝑤 = (adj𝑇) → ((𝑤𝑥) ·ih 𝑦) = (((adj𝑇)‘𝑥) ·ih 𝑦))
1615eqeq2d 2620 . . . . . . . . 9 (𝑤 = (adj𝑇) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
17162ralbidv 2972 . . . . . . . 8 (𝑤 = (adj𝑇) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
1813, 173anbi23d 1394 . . . . . . 7 (𝑤 = (adj𝑇) → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
1912, 18opelopabg 4918 . . . . . 6 ((𝑇 ∈ dom adj ∧ (adj𝑇) ∈ V) → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
206, 19mpan2 703 . . . . 5 (𝑇 ∈ dom adj → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
215, 20mpbid 221 . . . 4 (𝑇 ∈ dom adj → (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
2221simp3d 1068 . . 3 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
23 oveq1 6556 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
24 fveq2 6103 . . . . . 6 (𝑥 = 𝐴 → ((adj𝑇)‘𝑥) = ((adj𝑇)‘𝐴))
2524oveq1d 6564 . . . . 5 (𝑥 = 𝐴 → (((adj𝑇)‘𝑥) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝑦))
2623, 25eqeq12d 2625 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦)))
27 fveq2 6103 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
2827oveq2d 6565 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
29 oveq2 6557 . . . . 5 (𝑦 = 𝐵 → (((adj𝑇)‘𝐴) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝐵))
3028, 29eqeq12d 2625 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3126, 30rspc2v 3293 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3222, 31syl5com 31 . 2 (𝑇 ∈ dom adj → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
33323impib 1254 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cop 4131  {copab 4642  dom cdm 5038  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  chil 27160   ·ih csp 27163  adjcado 27196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-adjh 28092
This theorem is referenced by:  adj2  28177  adjadj  28179  hmopadj2  28184
  Copyright terms: Public domain W3C validator