Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcanpi Structured version   Visualization version   GIF version

 Description: Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcanpi ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))

StepHypRef Expression
1 addclpi 9593 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
2 eleq1 2676 . . . . . . . . . 10 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴 +N 𝐵) ∈ N ↔ (𝐴 +N 𝐶) ∈ N))
31, 2syl5ib 233 . . . . . . . . 9 ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → (𝐴 +N 𝐶) ∈ N))
43imp 444 . . . . . . . 8 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → (𝐴 +N 𝐶) ∈ N)
5 dmaddpi 9591 . . . . . . . . 9 dom +N = (N × N)
6 0npi 9583 . . . . . . . . 9 ¬ ∅ ∈ N
75, 6ndmovrcl 6718 . . . . . . . 8 ((𝐴 +N 𝐶) ∈ N → (𝐴N𝐶N))
8 simpr 476 . . . . . . . 8 ((𝐴N𝐶N) → 𝐶N)
94, 7, 83syl 18 . . . . . . 7 (((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N)) → 𝐶N)
10 addpiord 9585 . . . . . . . . . 10 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
1110adantr 480 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
12 addpiord 9585 . . . . . . . . . 10 ((𝐴N𝐶N) → (𝐴 +N 𝐶) = (𝐴 +𝑜 𝐶))
1312adantlr 747 . . . . . . . . 9 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 +N 𝐶) = (𝐴 +𝑜 𝐶))
1411, 13eqeq12d 2625 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ (𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶)))
15 pinn 9579 . . . . . . . . . 10 (𝐴N𝐴 ∈ ω)
16 pinn 9579 . . . . . . . . . 10 (𝐵N𝐵 ∈ ω)
17 pinn 9579 . . . . . . . . . 10 (𝐶N𝐶 ∈ ω)
18 nnacan 7595 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶))
1918biimpd 218 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) → 𝐵 = 𝐶))
2015, 16, 17, 19syl3an 1360 . . . . . . . . 9 ((𝐴N𝐵N𝐶N) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) → 𝐵 = 𝐶))
21203expa 1257 . . . . . . . 8 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) → 𝐵 = 𝐶))
2214, 21sylbid 229 . . . . . . 7 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
239, 22sylan2 490 . . . . . 6 (((𝐴N𝐵N) ∧ ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ∧ (𝐴N𝐵N))) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
2423exp32 629 . . . . 5 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))))
2524imp4b 611 . . . 4 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶))
2625pm2.43i 50 . . 3 (((𝐴N𝐵N) ∧ (𝐴 +N 𝐵) = (𝐴 +N 𝐶)) → 𝐵 = 𝐶)
2726ex 449 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) → 𝐵 = 𝐶))
28 oveq2 6557 . 2 (𝐵 = 𝐶 → (𝐴 +N 𝐵) = (𝐴 +N 𝐶))
2927, 28impbid1 214 1 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444  Ncnpi 9545   +N cpli 9546 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-ni 9573  df-pli 9574 This theorem is referenced by:  adderpqlem  9655
 Copyright terms: Public domain W3C validator