Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem13 Structured version   Visualization version   GIF version

Theorem ackbij1lem13 8937
 Description: Lemma for ackbij1 8943. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem13 (𝐹‘∅) = ∅
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem13
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 8934 . . . . 5 𝐹:(𝒫 ω ∩ Fin)⟶ω
3 peano1 6977 . . . . 5 ∅ ∈ ω
42, 3f0cli 6278 . . . 4 (𝐹‘∅) ∈ ω
5 nna0 7571 . . . 4 ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +𝑜 ∅) = (𝐹‘∅))
64, 5ax-mp 5 . . 3 ((𝐹‘∅) +𝑜 ∅) = (𝐹‘∅)
7 un0 3919 . . . 4 (∅ ∪ ∅) = ∅
87fveq2i 6106 . . 3 (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅)
9 ackbij1lem3 8927 . . . . 5 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
103, 9ax-mp 5 . . . 4 ∅ ∈ (𝒫 ω ∩ Fin)
11 in0 3920 . . . 4 (∅ ∩ ∅) = ∅
121ackbij1lem9 8933 . . . 4 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +𝑜 (𝐹‘∅)))
1310, 10, 11, 12mp3an 1416 . . 3 (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +𝑜 (𝐹‘∅))
146, 8, 133eqtr2ri 2639 . 2 ((𝐹‘∅) +𝑜 (𝐹‘∅)) = ((𝐹‘∅) +𝑜 ∅)
15 nnacan 7595 . . 3 (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +𝑜 (𝐹‘∅)) = ((𝐹‘∅) +𝑜 ∅) ↔ (𝐹‘∅) = ∅))
164, 4, 3, 15mp3an 1416 . 2 (((𝐹‘∅) +𝑜 (𝐹‘∅)) = ((𝐹‘∅) +𝑜 ∅) ↔ (𝐹‘∅) = ∅)
1714, 16mpbi 219 1 (𝐹‘∅) = ∅
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ ciun 4455   ↦ cmpt 4643   × cxp 5036  ‘cfv 5804  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444  Fincfn 7841  cardccrd 8644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873 This theorem is referenced by:  ackbij1lem14  8938  ackbij1  8943
 Copyright terms: Public domain W3C validator