Step | Hyp | Ref
| Expression |
1 | | elex 3185 |
. . . . 5
⊢ (∪ 𝐴
∈ dom card → ∪ 𝐴 ∈ V) |
2 | | uniexb 6866 |
. . . . 5
⊢ (𝐴 ∈ V ↔ ∪ 𝐴
∈ V) |
3 | 1, 2 | sylibr 223 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → 𝐴
∈ V) |
4 | | dfac8b 8737 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → ∃𝑟 𝑟 We ∪ 𝐴) |
5 | | dfac8c 8739 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
6 | 3, 4, 5 | sylc 63 |
. . 3
⊢ (∪ 𝐴
∈ dom card → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
7 | 6 | adantr 480 |
. 2
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
8 | | nelne2 2879 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅) |
9 | 8 | ancoms 468 |
. . . . . . . . . . 11
⊢ ((¬
∅ ∈ 𝐴 ∧
𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
10 | 9 | adantll 746 |
. . . . . . . . . 10
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
11 | | pm2.27 41 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
13 | 12 | ralimdva 2945 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥)) |
14 | 13 | imp 444 |
. . . . . . 7
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
15 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑔‘𝑥) = (𝑔‘𝑦)) |
16 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
17 | 15, 16 | eleq12d 2682 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑦) ∈ 𝑦)) |
18 | 17 | rspccva 3281 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝑔‘𝑥) ∈ 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
19 | 14, 18 | sylan 487 |
. . . . . 6
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
20 | | elunii 4377 |
. . . . . 6
⊢ (((𝑔‘𝑦) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
21 | 19, 20 | sylancom 698 |
. . . . 5
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
22 | | eqid 2610 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) |
23 | 21, 22 | fmptd 6292 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴) |
24 | 3 | ad2antrr 758 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → 𝐴 ∈ V) |
25 | 1 | ad2antrr 758 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∪ 𝐴 ∈ V) |
26 | | fex2 7014 |
. . . 4
⊢ (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ 𝐴 ∈ V ∧ ∪
𝐴 ∈ V) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V) |
27 | 23, 24, 25, 26 | syl3anc 1318 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V) |
28 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑔‘𝑦) = (𝑔‘𝑥)) |
29 | | fvex 6113 |
. . . . . . . 8
⊢ (𝑔‘𝑥) ∈ V |
30 | 28, 22, 29 | fvmpt 6191 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) = (𝑔‘𝑥)) |
31 | 30 | eleq1d 2672 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑥) ∈ 𝑥)) |
32 | 31 | ralbiia 2962 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
33 | 14, 32 | sylibr 223 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥) |
34 | 23, 33 | jca 553 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
35 | | feq1 5939 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓:𝐴⟶∪ 𝐴 ↔ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴)) |
36 | | fveq1 6102 |
. . . . . . 7
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓‘𝑥) = ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥)) |
37 | 36 | eleq1d 2672 |
. . . . . 6
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓‘𝑥) ∈ 𝑥 ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
38 | 37 | ralbidv 2969 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
39 | 35, 38 | anbi12d 743 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥))) |
40 | 39 | spcegv 3267 |
. . 3
⊢ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V → (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
41 | 27, 34, 40 | sylc 63 |
. 2
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
42 | 7, 41 | exlimddv 1850 |
1
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |