Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac8c | Structured version Visualization version GIF version |
Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8c | ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) | |
2 | 1 | dfac8clem 8738 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∖ cdif 3537 ∅c0 3874 {csn 4125 ∪ cuni 4372 class class class wbr 4583 ↦ cmpt 4643 We wwe 4996 ‘cfv 5804 ℩crio 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-riota 6511 |
This theorem is referenced by: ween 8741 ac5num 8742 dfac8 8840 vitali 23188 |
Copyright terms: Public domain | W3C validator |