MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Unicode version

Theorem ac5num 8218
Description: A version of ac5b 8659 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
Distinct variable group:    x, f, A

Proof of Theorem ac5num
Dummy variables  g 
r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2993 . . . . 5  |-  ( U. A  e.  dom  card  ->  U. A  e.  _V )
2 uniexb 6398 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
31, 2sylibr 212 . . . 4  |-  ( U. A  e.  dom  card  ->  A  e.  _V )
4 dfac8b 8213 . . . 4  |-  ( U. A  e.  dom  card  ->  E. r  r  We  U. A )
5 dfac8c 8215 . . . 4  |-  ( A  e.  _V  ->  ( E. r  r  We  U. A  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  (
g `  x )  e.  x ) ) )
63, 4, 5sylc 60 . . 3  |-  ( U. A  e.  dom  card  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )
76adantr 465 . 2  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. g A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )
8 nelne2 2714 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  -.  (/)  e.  A )  ->  x  =/=  (/) )
98ancoms 453 . . . . . . . . . . 11  |-  ( ( -.  (/)  e.  A  /\  x  e.  A )  ->  x  =/=  (/) )
109adantll 713 . . . . . . . . . 10  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  x  e.  A )  ->  x  =/=  (/) )
11 pm2.27 39 . . . . . . . . . 10  |-  ( x  =/=  (/)  ->  ( (
x  =/=  (/)  ->  (
g `  x )  e.  x )  ->  (
g `  x )  e.  x ) )
1210, 11syl 16 . . . . . . . . 9  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  x  e.  A )  ->  (
( x  =/=  (/)  ->  (
g `  x )  e.  x )  ->  (
g `  x )  e.  x ) )
1312ralimdva 2806 . . . . . . . 8  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  ( A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
)  ->  A. x  e.  A  ( g `  x )  e.  x
) )
1413imp 429 . . . . . . 7  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A. x  e.  A  ( g `  x )  e.  x
)
15 fveq2 5703 . . . . . . . . 9  |-  ( x  =  y  ->  (
g `  x )  =  ( g `  y ) )
16 id 22 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
1715, 16eleq12d 2511 . . . . . . . 8  |-  ( x  =  y  ->  (
( g `  x
)  e.  x  <->  ( g `  y )  e.  y ) )
1817rspccva 3084 . . . . . . 7  |-  ( ( A. x  e.  A  ( g `  x
)  e.  x  /\  y  e.  A )  ->  ( g `  y
)  e.  y )
1914, 18sylan 471 . . . . . 6  |-  ( ( ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  /\  y  e.  A )  ->  (
g `  y )  e.  y )
20 elunii 4108 . . . . . 6  |-  ( ( ( g `  y
)  e.  y  /\  y  e.  A )  ->  ( g `  y
)  e.  U. A
)
2119, 20sylancom 667 . . . . 5  |-  ( ( ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  /\  y  e.  A )  ->  (
g `  y )  e.  U. A )
22 eqid 2443 . . . . 5  |-  ( y  e.  A  |->  ( g `
 y ) )  =  ( y  e.  A  |->  ( g `  y ) )
2321, 22fmptd 5879 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
y  e.  A  |->  ( g `  y ) ) : A --> U. A
)
243ad2antrr 725 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A  e.  _V )
251ad2antrr 725 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  U. A  e.  _V )
26 fex2 6544 . . . 4  |-  ( ( ( y  e.  A  |->  ( g `  y
) ) : A --> U. A  /\  A  e. 
_V  /\  U. A  e. 
_V )  ->  (
y  e.  A  |->  ( g `  y ) )  e.  _V )
2723, 24, 25, 26syl3anc 1218 . . 3  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
y  e.  A  |->  ( g `  y ) )  e.  _V )
28 fveq2 5703 . . . . . . . 8  |-  ( y  =  x  ->  (
g `  y )  =  ( g `  x ) )
29 fvex 5713 . . . . . . . 8  |-  ( g `
 x )  e. 
_V
3028, 22, 29fvmpt 5786 . . . . . . 7  |-  ( x  e.  A  ->  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  =  ( g `
 x ) )
3130eleq1d 2509 . . . . . 6  |-  ( x  e.  A  ->  (
( ( y  e.  A  |->  ( g `  y ) ) `  x )  e.  x  <->  ( g `  x )  e.  x ) )
3231ralbiia 2759 . . . . 5  |-  ( A. x  e.  A  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x  <->  A. x  e.  A  ( g `  x )  e.  x
)
3314, 32sylibr 212 . . . 4  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  A. x  e.  A  ( (
y  e.  A  |->  ( g `  y ) ) `  x )  e.  x )
3423, 33jca 532 . . 3  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  (
( y  e.  A  |->  ( g `  y
) ) : A --> U. A  /\  A. x  e.  A  ( (
y  e.  A  |->  ( g `  y ) ) `  x )  e.  x ) )
35 feq1 5554 . . . . 5  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( f : A --> U. A  <->  ( y  e.  A  |->  ( g `  y ) ) : A --> U. A ) )
36 fveq1 5702 . . . . . . 7  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( f `  x
)  =  ( ( y  e.  A  |->  ( g `  y ) ) `  x ) )
3736eleq1d 2509 . . . . . 6  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( ( f `  x )  e.  x  <->  ( ( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x ) )
3837ralbidv 2747 . . . . 5  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( A. x  e.  A  ( f `  x )  e.  x  <->  A. x  e.  A  ( ( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x ) )
3935, 38anbi12d 710 . . . 4  |-  ( f  =  ( y  e.  A  |->  ( g `  y ) )  -> 
( ( f : A --> U. A  /\  A. x  e.  A  (
f `  x )  e.  x )  <->  ( (
y  e.  A  |->  ( g `  y ) ) : A --> U. A  /\  A. x  e.  A  ( ( y  e.  A  |->  ( g `  y ) ) `  x )  e.  x
) ) )
4039spcegv 3070 . . 3  |-  ( ( y  e.  A  |->  ( g `  y ) )  e.  _V  ->  ( ( ( y  e.  A  |->  ( g `  y ) ) : A --> U. A  /\  A. x  e.  A  (
( y  e.  A  |->  ( g `  y
) ) `  x
)  e.  x )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) ) )
4127, 34, 40sylc 60 . 2  |-  ( ( ( U. A  e. 
dom  card  /\  -.  (/)  e.  A
)  /\  A. x  e.  A  ( x  =/=  (/)  ->  ( g `  x )  e.  x
) )  ->  E. f
( f : A --> U. A  /\  A. x  e.  A  ( f `  x )  e.  x
) )
427, 41exlimddv 1692 1  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2618   A.wral 2727   _Vcvv 2984   (/)c0 3649   U.cuni 4103    e. cmpt 4362    We wwe 4690   dom cdm 4852   -->wf 5426   ` cfv 5430   cardccrd 8117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-en 7323  df-card 8121
This theorem is referenced by:  numacn  8231  ac5b  8659  ac6num  8660
  Copyright terms: Public domain W3C validator