Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinf0 Structured version   Visualization version   GIF version

Theorem xrinf0 12039
 Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
xrinf0 inf(∅, ℝ*, < ) = +∞

Proof of Theorem xrinf0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11850 . . . 4 < Or ℝ*
21a1i 11 . . 3 (⊤ → < Or ℝ*)
3 pnfxr 9971 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (⊤ → +∞ ∈ ℝ*)
5 noel 3878 . . . . 5 ¬ 𝑦 ∈ ∅
65pm2.21i 115 . . . 4 (𝑦 ∈ ∅ → ¬ 𝑦 < +∞)
76adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞)
8 pnfnlt 11838 . . . . . 6 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
98pm2.21d 117 . . . . 5 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
109imp 444 . . . 4 ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
1110adantl 481 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
122, 4, 7, 11eqinfd 8274 . 2 (⊤ → inf(∅, ℝ*, < ) = +∞)
1312trud 1484 1 inf(∅, ℝ*, < ) = +∞
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977  ∃wrex 2897  ∅c0 3874   class class class wbr 4583   Or wor 4958  infcinf 8230  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958 This theorem is referenced by:  ramcl2lem  15551  infleinf  38529
 Copyright terms: Public domain W3C validator