MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzin Structured version   Visualization version   GIF version

Theorem uzin 11596
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem uzin
StepHypRef Expression
1 uztric 11585 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2 uzss 11584 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3 sseqin2 3779 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
42, 3sylib 207 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
5 eluzle 11576 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
6 iftrue 4042 . . . . . 6 (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
75, 6syl 17 . . . . 5 (𝑁 ∈ (ℤ𝑀) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
87fveq2d 6107 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑁))
94, 8eqtr4d 2647 . . 3 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
10 uzss 11584 . . . . 5 (𝑀 ∈ (ℤ𝑁) → (ℤ𝑀) ⊆ (ℤ𝑁))
11 df-ss 3554 . . . . 5 ((ℤ𝑀) ⊆ (ℤ𝑁) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
1210, 11sylib 207 . . . 4 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
13 eluzel2 11568 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
14 eluzelz 11573 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
15 zre 11258 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
16 zre 11258 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
17 letri3 10002 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1815, 16, 17syl2an 493 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1913, 14, 18syl2anc 691 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
20 eluzle 11576 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
2120biantrurd 528 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 ↔ (𝑁𝑀𝑀𝑁)))
2219, 21bitr4d 270 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀𝑀𝑁))
2322biimprcd 239 . . . . . . . 8 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → 𝑁 = 𝑀))
246eqeq1d 2612 . . . . . . . 8 (𝑀𝑁 → (if(𝑀𝑁, 𝑁, 𝑀) = 𝑀𝑁 = 𝑀))
2523, 24sylibrd 248 . . . . . . 7 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
2625com12 32 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
27 iffalse 4045 . . . . . 6 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2826, 27pm2.61d1 170 . . . . 5 (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2928fveq2d 6107 . . . 4 (𝑀 ∈ (ℤ𝑁) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑀))
3012, 29eqtr4d 2647 . . 3 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
319, 30jaoi 393 . 2 ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
321, 31syl 17 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540  ifcif 4036   class class class wbr 4583  cfv 5804  cr 9814  cle 9954  cz 11254  cuz 11563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564
This theorem is referenced by:  uzin2  13932  explecnv  14436  uzrest  21511
  Copyright terms: Public domain W3C validator