MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitg Structured version   Visualization version   GIF version

Theorem unitg 20582
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 20579 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 selpw 4115 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 223 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 3572 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 4547 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 219 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 11 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 20581 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 4398 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 3585 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108   cuni 4372  cfv 5804  topGenctg 15921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-topgen 15927
This theorem is referenced by:  tgcl  20584  tgtopon  20586  tgcmp  21014  2ndcsep  21072  txtopon  21204  ptuni  21207  xkouni  21212  prdstopn  21241  tgqtop  21325  alexsubb  21660  alexsubALTlem3  21663  alexsubALTlem4  21664  ptcmplem1  21666  uniretop  22376  fneval  31517  fnemeet1  31531  kelac2  36653
  Copyright terms: Public domain W3C validator