Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmi | Structured version Visualization version GIF version |
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
Ref | Expression |
---|---|
ulm2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ulm2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ulm2.f | ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆)) |
ulm2.b | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) |
ulm2.a | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) |
ulmi.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
ulmi.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
ulmi | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
2 | ulmi.u | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
3 | ulm2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | ulm2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | ulm2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆)) | |
6 | ulm2.b | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) | |
7 | ulm2.a | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) | |
8 | ulmcl 23939 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
10 | ulmscl 23937 | . . . . 5 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | 3, 4, 5, 6, 7, 9, 11 | ulm2 23943 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) |
13 | 2, 12 | mpbid 221 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥) |
14 | breq2 4587 | . . . . 5 ⊢ (𝑥 = 𝐶 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝐶)) | |
15 | 14 | ralbidv 2969 | . . . 4 ⊢ (𝑥 = 𝐶 → (∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
16 | 15 | rexralbidv 3040 | . . 3 ⊢ (𝑥 = 𝐶 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
17 | 16 | rspcv 3278 | . 2 ⊢ (𝐶 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶)) |
18 | 1, 13, 17 | sylc 63 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 Vcvv 3173 class class class wbr 4583 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 ℂcc 9813 < clt 9953 − cmin 10145 ℤcz 11254 ℤ≥cuz 11563 ℝ+crp 11708 abscabs 13822 ⇝𝑢culm 23934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-neg 10148 df-z 11255 df-uz 11564 df-ulm 23935 |
This theorem is referenced by: ulmshftlem 23947 ulmcau 23953 ulmbdd 23956 ulmcn 23957 iblulm 23965 itgulm 23966 |
Copyright terms: Public domain | W3C validator |