Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmi Structured version   Visualization version   GIF version

Theorem ulmi 23944
 Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulmi.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
ulmi.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ulmi (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐹   𝑗,𝐺,𝑘,𝑧   𝑗,𝑀,𝑘,𝑧   𝜑,𝑗,𝑘,𝑧   𝐴,𝑗,𝑘   𝐶,𝑗,𝑘,𝑧   𝑆,𝑗,𝑘,𝑧   𝑗,𝑍
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ulmi.c . 2 (𝜑𝐶 ∈ ℝ+)
2 ulmi.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
3 ulm2.z . . . 4 𝑍 = (ℤ𝑀)
4 ulm2.m . . . 4 (𝜑𝑀 ∈ ℤ)
5 ulm2.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
6 ulm2.b . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
7 ulm2.a . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
8 ulmcl 23939 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
92, 8syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
10 ulmscl 23937 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
112, 10syl 17 . . . 4 (𝜑𝑆 ∈ V)
123, 4, 5, 6, 7, 9, 11ulm2 23943 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
132, 12mpbid 221 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)
14 breq2 4587 . . . . 5 (𝑥 = 𝐶 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝐶))
1514ralbidv 2969 . . . 4 (𝑥 = 𝐶 → (∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
1615rexralbidv 3040 . . 3 (𝑥 = 𝐶 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
1716rspcv 3278 . 2 (𝐶 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
181, 13, 17sylc 63 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813   < clt 9953   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  abscabs 13822  ⇝𝑢culm 23934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-ulm 23935 This theorem is referenced by:  ulmshftlem  23947  ulmcau  23953  ulmbdd  23956  ulmcn  23957  iblulm  23965  itgulm  23966
 Copyright terms: Public domain W3C validator