MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Visualization version   GIF version

Theorem ulmbdd 23956
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z 𝑍 = (ℤ𝑀)
ulmbdd.m (𝜑𝑀 ∈ ℤ)
ulmbdd.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulmbdd.b ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
ulmbdd.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝐺,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧   𝑘,𝑀,𝑧   𝑘,𝑍,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem ulmbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3 𝑍 = (ℤ𝑀)
2 ulmbdd.m . . 3 (𝜑𝑀 ∈ ℤ)
3 ulmbdd.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
4 eqidd 2611 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5 eqidd 2611 . . 3 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
6 ulmbdd.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 1rp 11712 . . . 4 1 ∈ ℝ+
87a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
91, 2, 3, 4, 5, 6, 8ulmi 23944 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
101r19.2uz 13939 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
11 ulmbdd.b . . . . . 6 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
12 r19.26 3046 . . . . . . . . 9 (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) ↔ (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))
13 peano2re 10088 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1413adantl 481 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
15 ulmcl 23939 . . . . . . . . . . . . . . . . 17 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
166, 15syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝑆⟶ℂ)
1716ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐺:𝑆⟶ℂ)
18 simprl 790 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑧𝑆)
1917, 18ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐺𝑧) ∈ ℂ)
2019abscld 14023 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ∈ ℝ)
213ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
22 simpllr 795 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑘𝑍)
2321, 22ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
24 elmapi 7765 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘):𝑆⟶ℂ)
2625, 18ffvelrnd 6268 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2726abscld 14023 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
2819, 26subcld 10271 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)) ∈ ℂ)
2928abscld 14023 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ)
3027, 29readdcld 9948 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ∈ ℝ)
3114adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝑥 + 1) ∈ ℝ)
3226, 19pncan3d 10274 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (𝐺𝑧))
3332fveq2d 6107 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) = (abs‘(𝐺𝑧)))
3426, 28abstrid 14043 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
3533, 34eqbrtrrd 4607 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
36 simplr 788 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑥 ∈ ℝ)
37 1re 9918 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 1 ∈ ℝ)
39 simprrl 800 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
4019, 26abssubd 14040 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
41 simprrr 801 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
4240, 41eqbrtrd 4605 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1)
43 ltle 10005 . . . . . . . . . . . . . . . 16 (((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4429, 37, 43sylancl 693 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4542, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1)
4627, 29, 36, 38, 39, 45le2addd 10525 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ (𝑥 + 1))
4720, 30, 31, 35, 46letrd 10073 . . . . . . . . . . . 12 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1))
4847expr 641 . . . . . . . . . . 11 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ 𝑧𝑆) → (((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
4948ralimdva 2945 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
50 breq2 4587 . . . . . . . . . . . 12 (𝑦 = (𝑥 + 1) → ((abs‘(𝐺𝑧)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
5150ralbidv 2969 . . . . . . . . . . 11 (𝑦 = (𝑥 + 1) → (∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
5251rspcev 3282 . . . . . . . . . 10 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)
5314, 49, 52syl6an 566 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5412, 53syl5bir 232 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → ((∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5554expd 451 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5655rexlimdva 3013 . . . . . 6 ((𝜑𝑘𝑍) → (∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5711, 56mpd 15 . . . . 5 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
58 breq2 4587 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐺𝑧)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑥))
5958ralbidv 2969 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6059cbvrexv 3148 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
6157, 60syl6ib 240 . . . 4 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6261rexlimdva 3013 . . 3 (𝜑 → (∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6310, 62syl5 33 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
649, 63mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  +crp 11708  abscabs 13822  𝑢culm 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-ulm 23935
This theorem is referenced by:  mtestbdd  23963
  Copyright terms: Public domain W3C validator