Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmclm Structured version   Visualization version   GIF version

Theorem ulmclm 23945
 Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmclm.z 𝑍 = (ℤ𝑀)
ulmclm.m (𝜑𝑀 ∈ ℤ)
ulmclm.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulmclm.a (𝜑𝐴𝑆)
ulmclm.h (𝜑𝐻𝑊)
ulmclm.e ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
ulmclm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmclm (𝜑𝐻 ⇝ (𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝐻   𝑘,𝑀   𝑆,𝑘   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem ulmclm
Dummy variables 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmclm.u . 2 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmclm.a . . . . . . 7 (𝜑𝐴𝑆)
3 fveq2 6103 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐴))
4 fveq2 6103 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
53, 4oveq12d 6567 . . . . . . . . . 10 (𝑧 = 𝐴 → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑘)‘𝐴) − (𝐺𝐴)))
65fveq2d 6107 . . . . . . . . 9 (𝑧 = 𝐴 → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))))
76breq1d 4593 . . . . . . . 8 (𝑧 = 𝐴 → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
87rspcv 3278 . . . . . . 7 (𝐴𝑆 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
92, 8syl 17 . . . . . 6 (𝜑 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
109ralimdv 2946 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1110reximdv 2999 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
1211ralimdv 2946 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
13 ulmclm.z . . . 4 𝑍 = (ℤ𝑀)
14 ulmclm.m . . . 4 (𝜑𝑀 ∈ ℤ)
15 ulmclm.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
16 eqidd 2611 . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
17 eqidd 2611 . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
18 ulmcl 23939 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
191, 18syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
20 ulmscl 23937 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
211, 20syl 17 . . . 4 (𝜑𝑆 ∈ V)
2213, 14, 15, 16, 17, 19, 21ulm2 23943 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
23 ulmclm.h . . . 4 (𝜑𝐻𝑊)
24 ulmclm.e . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) = (𝐻𝑘))
2524eqcomd 2616 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)‘𝐴))
2619, 2ffvelrnd 6268 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
2715ffvelrnda 6267 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
28 elmapi 7765 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2927, 28syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
302adantr 480 . . . . 5 ((𝜑𝑘𝑍) → 𝐴𝑆)
3129, 30ffvelrnd 6268 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘)‘𝐴) ∈ ℂ)
3213, 14, 23, 25, 26, 31clim2c 14084 . . 3 (𝜑 → (𝐻 ⇝ (𝐺𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝐴) − (𝐺𝐴))) < 𝑥))
3312, 22, 323imtr4d 282 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻 ⇝ (𝐺𝐴)))
341, 33mpd 15 1 (𝜑𝐻 ⇝ (𝐺𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813   < clt 9953   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  abscabs 13822   ⇝ cli 14063  ⇝𝑢culm 23934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-clim 14067  df-ulm 23935 This theorem is referenced by:  ulmuni  23950  ulmdvlem3  23960  mbfulm  23964  pserulm  23980  lgamgulm2  24562  lgamcvglem  24566  knoppcnlem9  31661  knoppndvlem4  31676
 Copyright terms: Public domain W3C validator