Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   GIF version

Theorem tz7.44-3 7391
 Description: The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2 reseq2 5312 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
32fveq2d 6107 . . . . . 6 (𝑦 = 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹𝐵)))
41, 3eqeq12d 2625 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹𝐵) = (𝐺‘(𝐹𝐵))))
5 tz7.44.2 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3245 . . . 4 (𝐵𝑋 → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
76adantr 480 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
82eleq1d 2672 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹𝐵) ∈ V))
9 tz7.44.3 . . . . . . 7 (𝑦𝑋 → (𝐹𝑦) ∈ V)
108, 9vtoclga 3245 . . . . . 6 (𝐵𝑋 → (𝐹𝐵) ∈ V)
1110adantr 480 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) ∈ V)
12 simpr 476 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → Lim 𝐵)
13 nlim0 5700 . . . . . . . . . . 11 ¬ Lim ∅
14 dmres 5339 . . . . . . . . . . . . . 14 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18 Ord 𝑋
16 ordelss 5656 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑋𝐵𝑋) → 𝐵𝑋)
1715, 16mpan 702 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐵𝑋)
1817adantr 480 . . . . . . . . . . . . . . . 16 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵𝑋)
19 tz7.44.4 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
20 fndm 5904 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝐹 = 𝑋
2218, 21syl6sseqr 3615 . . . . . . . . . . . . . . 15 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹)
23 df-ss 3554 . . . . . . . . . . . . . . 15 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
2422, 23sylib 207 . . . . . . . . . . . . . 14 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵)
2514, 24syl5eq 2656 . . . . . . . . . . . . 13 ((𝐵𝑋 ∧ Lim 𝐵) → dom (𝐹𝐵) = 𝐵)
26 dmeq 5246 . . . . . . . . . . . . . 14 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = dom ∅)
27 dm0 5260 . . . . . . . . . . . . . 14 dom ∅ = ∅
2826, 27syl6eq 2660 . . . . . . . . . . . . 13 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = ∅)
2925, 28sylan9req 2665 . . . . . . . . . . . 12 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → 𝐵 = ∅)
30 limeq 5652 . . . . . . . . . . . 12 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
3129, 30syl 17 . . . . . . . . . . 11 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅))
3213, 31mtbiri 316 . . . . . . . . . 10 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → ¬ Lim 𝐵)
3332ex 449 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → ((𝐹𝐵) = ∅ → ¬ Lim 𝐵))
3412, 33mt2d 130 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → ¬ (𝐹𝐵) = ∅)
3534iffalsed 4047 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
36 limeq 5652 . . . . . . . . . 10 (dom (𝐹𝐵) = 𝐵 → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3725, 36syl 17 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3812, 37mpbird 246 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → Lim dom (𝐹𝐵))
3938iftrued 4044 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))) = ran (𝐹𝐵))
4035, 39eqtrd 2644 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = ran (𝐹𝐵))
41 rnexg 6990 . . . . . . 7 ((𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
42 uniexg 6853 . . . . . . 7 (ran (𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
4311, 41, 423syl 18 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → ran (𝐹𝐵) ∈ V)
4440, 43eqeltrd 2688 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V)
45 eqeq1 2614 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝑥 = ∅ ↔ (𝐹𝐵) = ∅))
46 dmeq 5246 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
47 limeq 5652 . . . . . . . . 9 (dom 𝑥 = dom (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
4846, 47syl 17 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
49 rneq 5272 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
5049unieqd 4382 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
51 fveq1 6102 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom 𝑥))
5246unieqd 4382 . . . . . . . . . . 11 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
5352fveq2d 6107 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → ((𝐹𝐵)‘ dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5451, 53eqtrd 2644 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5554fveq2d 6107 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))
5648, 50, 55ifbieq12d 4063 . . . . . . 7 (𝑥 = (𝐹𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
5745, 56ifbieq2d 4061 . . . . . 6 (𝑥 = (𝐹𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
58 tz7.44.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
5957, 58fvmptg 6189 . . . . 5 (((𝐹𝐵) ∈ V ∧ if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6011, 44, 59syl2anc 691 . . . 4 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6160, 40eqtrd 2644 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = ran (𝐹𝐵))
627, 61eqtrd 2644 . 2 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = ran (𝐹𝐵))
63 df-ima 5051 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
6463unieqi 4381 . 2 (𝐹𝐵) = ran (𝐹𝐵)
6562, 64syl6eqr 2662 1 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ifcif 4036  ∪ cuni 4372   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   “ cima 5041  Ord word 5639  Lim wlim 5641   Fn wfn 5799  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-lim 5645  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812 This theorem is referenced by:  rdglimg  7408
 Copyright terms: Public domain W3C validator