MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   Unicode version

Theorem tz7.44-3 7123
Description: The value of  F at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
tz7.44.2  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
tz7.44.3  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
tz7.44.4  |-  F  Fn  X
tz7.44.5  |-  Ord  X
Assertion
Ref Expression
tz7.44-3  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( F `  B )  =  U. ( F " B ) )
Distinct variable groups:    x, A    x, y, B    x, F, y    y, G    x, H    y, X
Allowed substitution hints:    A( y)    G( x)    H( y)    X( x)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 5863 . . . . . 6  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
2 reseq2 5099 . . . . . . 7  |-  ( y  =  B  ->  ( F  |`  y )  =  ( F  |`  B ) )
32fveq2d 5867 . . . . . 6  |-  ( y  =  B  ->  ( G `  ( F  |`  y ) )  =  ( G `  ( F  |`  B ) ) )
41, 3eqeq12d 2465 . . . . 5  |-  ( y  =  B  ->  (
( F `  y
)  =  ( G `
 ( F  |`  y ) )  <->  ( F `  B )  =  ( G `  ( F  |`  B ) ) ) )
5 tz7.44.2 . . . . 5  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
64, 5vtoclga 3112 . . . 4  |-  ( B  e.  X  ->  ( F `  B )  =  ( G `  ( F  |`  B ) ) )
76adantr 467 . . 3  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( F `  B )  =  ( G `  ( F  |`  B ) ) )
82eleq1d 2512 . . . . . . 7  |-  ( y  =  B  ->  (
( F  |`  y
)  e.  _V  <->  ( F  |`  B )  e.  _V ) )
9 tz7.44.3 . . . . . . 7  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
108, 9vtoclga 3112 . . . . . 6  |-  ( B  e.  X  ->  ( F  |`  B )  e. 
_V )
1110adantr 467 . . . . 5  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( F  |`  B )  e. 
_V )
12 simpr 463 . . . . . . . . 9  |-  ( ( B  e.  X  /\  Lim  B )  ->  Lim  B )
13 nlim0 5480 . . . . . . . . . . 11  |-  -.  Lim  (/)
14 dmres 5124 . . . . . . . . . . . . . 14  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18  |-  Ord  X
16 ordelss 5438 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  X  /\  B  e.  X )  ->  B  C_  X )
1715, 16mpan 675 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  X  ->  B  C_  X )
1817adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  X  /\  Lim  B )  ->  B  C_  X )
19 tz7.44.4 . . . . . . . . . . . . . . . . 17  |-  F  Fn  X
20 fndm 5673 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  X  ->  dom  F  =  X )
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16  |-  dom  F  =  X
2218, 21syl6sseqr 3478 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  X  /\  Lim  B )  ->  B  C_ 
dom  F )
23 df-ss 3417 . . . . . . . . . . . . . . 15  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
2422, 23sylib 200 . . . . . . . . . . . . . 14  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( B  i^i  dom  F )  =  B )
2514, 24syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( B  e.  X  /\  Lim  B )  ->  dom  ( F  |`  B )  =  B )
26 dmeq 5034 . . . . . . . . . . . . . 14  |-  ( ( F  |`  B )  =  (/)  ->  dom  ( F  |`  B )  =  dom  (/) )
27 dm0 5047 . . . . . . . . . . . . . 14  |-  dom  (/)  =  (/)
2826, 27syl6eq 2500 . . . . . . . . . . . . 13  |-  ( ( F  |`  B )  =  (/)  ->  dom  ( F  |`  B )  =  (/) )
2925, 28sylan9req 2505 . . . . . . . . . . . 12  |-  ( ( ( B  e.  X  /\  Lim  B )  /\  ( F  |`  B )  =  (/) )  ->  B  =  (/) )
30 limeq 5434 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( Lim 
B  <->  Lim  (/) ) )
3129, 30syl 17 . . . . . . . . . . 11  |-  ( ( ( B  e.  X  /\  Lim  B )  /\  ( F  |`  B )  =  (/) )  ->  ( Lim  B  <->  Lim  (/) ) )
3213, 31mtbiri 305 . . . . . . . . . 10  |-  ( ( ( B  e.  X  /\  Lim  B )  /\  ( F  |`  B )  =  (/) )  ->  -.  Lim  B )
3332ex 436 . . . . . . . . 9  |-  ( ( B  e.  X  /\  Lim  B )  ->  (
( F  |`  B )  =  (/)  ->  -.  Lim  B ) )
3412, 33mt2d 121 . . . . . . . 8  |-  ( ( B  e.  X  /\  Lim  B )  ->  -.  ( F  |`  B )  =  (/) )
3534iffalsed 3891 . . . . . . 7  |-  ( ( B  e.  X  /\  Lim  B )  ->  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) )  =  if ( Lim 
dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) )
36 limeq 5434 . . . . . . . . . 10  |-  ( dom  ( F  |`  B )  =  B  ->  ( Lim  dom  ( F  |`  B )  <->  Lim  B ) )
3725, 36syl 17 . . . . . . . . 9  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( Lim  dom  ( F  |`  B )  <->  Lim  B ) )
3812, 37mpbird 236 . . . . . . . 8  |-  ( ( B  e.  X  /\  Lim  B )  ->  Lim  dom  ( F  |`  B ) )
3938iftrued 3888 . . . . . . 7  |-  ( ( B  e.  X  /\  Lim  B )  ->  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) )  = 
U. ran  ( F  |`  B ) )
4035, 39eqtrd 2484 . . . . . 6  |-  ( ( B  e.  X  /\  Lim  B )  ->  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) )  =  U. ran  ( F  |`  B ) )
41 rnexg 6722 . . . . . . 7  |-  ( ( F  |`  B )  e.  _V  ->  ran  ( F  |`  B )  e.  _V )
42 uniexg 6585 . . . . . . 7  |-  ( ran  ( F  |`  B )  e.  _V  ->  U. ran  ( F  |`  B )  e.  _V )
4311, 41, 423syl 18 . . . . . 6  |-  ( ( B  e.  X  /\  Lim  B )  ->  U. ran  ( F  |`  B )  e.  _V )
4440, 43eqeltrd 2528 . . . . 5  |-  ( ( B  e.  X  /\  Lim  B )  ->  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) )  e.  _V )
45 eqeq1 2454 . . . . . . 7  |-  ( x  =  ( F  |`  B )  ->  (
x  =  (/)  <->  ( F  |`  B )  =  (/) ) )
46 dmeq 5034 . . . . . . . . 9  |-  ( x  =  ( F  |`  B )  ->  dom  x  =  dom  ( F  |`  B ) )
47 limeq 5434 . . . . . . . . 9  |-  ( dom  x  =  dom  ( F  |`  B )  -> 
( Lim  dom  x  <->  Lim  dom  ( F  |`  B ) ) )
4846, 47syl 17 . . . . . . . 8  |-  ( x  =  ( F  |`  B )  ->  ( Lim  dom  x  <->  Lim  dom  ( F  |`  B ) ) )
49 rneq 5059 . . . . . . . . 9  |-  ( x  =  ( F  |`  B )  ->  ran  x  =  ran  ( F  |`  B ) )
5049unieqd 4207 . . . . . . . 8  |-  ( x  =  ( F  |`  B )  ->  U. ran  x  =  U. ran  ( F  |`  B ) )
51 fveq1 5862 . . . . . . . . . 10  |-  ( x  =  ( F  |`  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  B ) `  U. dom  x ) )
5246unieqd 4207 . . . . . . . . . . 11  |-  ( x  =  ( F  |`  B )  ->  U. dom  x  =  U. dom  ( F  |`  B ) )
5352fveq2d 5867 . . . . . . . . . 10  |-  ( x  =  ( F  |`  B )  ->  (
( F  |`  B ) `
 U. dom  x
)  =  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) )
5451, 53eqtrd 2484 . . . . . . . . 9  |-  ( x  =  ( F  |`  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) )
5554fveq2d 5867 . . . . . . . 8  |-  ( x  =  ( F  |`  B )  ->  ( H `  ( x `  U. dom  x ) )  =  ( H `
 ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) )
5648, 50, 55ifbieq12d 3907 . . . . . . 7  |-  ( x  =  ( F  |`  B )  ->  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) )  =  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  (
( F  |`  B ) `
 U. dom  ( F  |`  B ) ) ) ) )
5745, 56ifbieq2d 3905 . . . . . 6  |-  ( x  =  ( F  |`  B )  ->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `  U. dom  x ) ) ) )  =  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) , 
U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) ) )
58 tz7.44.1 . . . . . 6  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
5957, 58fvmptg 5944 . . . . 5  |-  ( ( ( F  |`  B )  e.  _V  /\  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) )  e.  _V )  -> 
( G `  ( F  |`  B ) )  =  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) , 
U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) ) )
6011, 44, 59syl2anc 666 . . . 4  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( G `  ( F  |`  B ) )  =  if ( ( F  |`  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  B ) ,  U. ran  ( F  |`  B ) ,  ( H `  ( ( F  |`  B ) `  U. dom  ( F  |`  B ) ) ) ) ) )
6160, 40eqtrd 2484 . . 3  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( G `  ( F  |`  B ) )  = 
U. ran  ( F  |`  B ) )
627, 61eqtrd 2484 . 2  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( F `  B )  =  U. ran  ( F  |`  B ) )
63 df-ima 4846 . . 3  |-  ( F
" B )  =  ran  ( F  |`  B )
6463unieqi 4206 . 2  |-  U. ( F " B )  = 
U. ran  ( F  |`  B )
6562, 64syl6eqr 2502 1  |-  ( ( B  e.  X  /\  Lim  B )  ->  ( F `  B )  =  U. ( F " B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   _Vcvv 3044    i^i cin 3402    C_ wss 3403   (/)c0 3730   ifcif 3880   U.cuni 4197    |-> cmpt 4460   dom cdm 4833   ran crn 4834    |` cres 4835   "cima 4836   Ord word 5421   Lim wlim 5423    Fn wfn 5576   ` cfv 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-ord 5425  df-lim 5427  df-iota 5545  df-fun 5583  df-fn 5584  df-fv 5589
This theorem is referenced by:  rdglimg  7140
  Copyright terms: Public domain W3C validator