Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Structured version   Visualization version   GIF version

Theorem trufil 21524
 Description: Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))

Proof of Theorem trufil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 21518 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) → (𝐿t 𝐴) ∈ (Fil‘𝐴))
2 ufilfil 21518 . . . . 5 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
3 trfil3 21502 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
42, 3sylan 487 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
51, 4syl5ib 233 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) → ¬ (𝑌𝐴) ∈ 𝐿))
64biimprd 237 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (Fil‘𝐴)))
7 elpwi 4117 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
8 simpll 786 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐿 ∈ (UFil‘𝑌))
9 simpr 476 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 788 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐴𝑌)
119, 10sstrd 3578 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝑌)
12 ufilss 21519 . . . . . . . . 9 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑥𝑌) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
138, 11, 12syl2anc 691 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
14 id 22 . . . . . . . . . . . . 13 (𝐴𝑌𝐴𝑌)
15 elfvdm 6130 . . . . . . . . . . . . 13 (𝐿 ∈ (UFil‘𝑌) → 𝑌 ∈ dom UFil)
16 ssexg 4732 . . . . . . . . . . . . 13 ((𝐴𝑌𝑌 ∈ dom UFil) → 𝐴 ∈ V)
1714, 15, 16syl2anr 494 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
18 elrestr 15912 . . . . . . . . . . . . 13 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐿) → (𝑥𝐴) ∈ (𝐿t 𝐴))
19183expia 1259 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2017, 19syldan 486 . . . . . . . . . . 11 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2120adantr 480 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
22 df-ss 3554 . . . . . . . . . . . 12 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
239, 22sylib 207 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐴) = 𝑥)
2423eleq1d 2672 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐴) ∈ (𝐿t 𝐴) ↔ 𝑥 ∈ (𝐿t 𝐴)))
2521, 24sylibd 228 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿𝑥 ∈ (𝐿t 𝐴)))
26 indif1 3830 . . . . . . . . . . . 12 ((𝑌𝑥) ∩ 𝐴) = ((𝑌𝐴) ∖ 𝑥)
27 simplr 788 . . . . . . . . . . . . . 14 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴𝑌)
28 sseqin2 3779 . . . . . . . . . . . . . 14 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2927, 28sylib 207 . . . . . . . . . . . . 13 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝐴) = 𝐴)
3029difeq1d 3689 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝐴) ∖ 𝑥) = (𝐴𝑥))
3126, 30syl5eq 2656 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) = (𝐴𝑥))
32 simpll 786 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐿 ∈ (UFil‘𝑌))
3317adantr 480 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴 ∈ V)
34 simprr 792 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝑥) ∈ 𝐿)
35 elrestr 15912 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑌𝑥) ∈ 𝐿) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3632, 33, 34, 35syl3anc 1318 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3731, 36eqeltrrd 2689 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝐴𝑥) ∈ (𝐿t 𝐴))
3837expr 641 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑌𝑥) ∈ 𝐿 → (𝐴𝑥) ∈ (𝐿t 𝐴)))
3925, 38orim12d 879 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4013, 39mpd 15 . . . . . . 7 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
417, 40sylan2 490 . . . . . 6 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
4241ralrimiva 2949 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
436, 42jctird 565 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))))
44 isufil 21517 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4543, 44syl6ibr 241 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (UFil‘𝐴)))
465, 45impbid 201 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
47 ufilb 21520 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ 𝐴𝐿 ↔ (𝑌𝐴) ∈ 𝐿))
4847con1bid 344 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿𝐴𝐿))
4946, 48bitrd 267 1 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  dom cdm 5038  ‘cfv 5804  (class class class)co 6549   ↾t crest 15904  Filcfil 21459  UFilcufil 21513 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-fbas 19564  df-fg 19565  df-fil 21460  df-ufil 21515 This theorem is referenced by:  ssufl  21532
 Copyright terms: Public domain W3C validator