MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Structured version   Unicode version

Theorem trufil 20705
Description: Conditions for the trace of an ultrafilter  L to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  A  e.  L ) )

Proof of Theorem trufil
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ufilfil 20699 . . . 4  |-  ( ( Lt  A )  e.  (
UFil `  A )  ->  ( Lt  A )  e.  ( Fil `  A ) )
2 ufilfil 20699 . . . . 5  |-  ( L  e.  ( UFil `  Y
)  ->  L  e.  ( Fil `  Y ) )
3 trfil3 20683 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
42, 3sylan 471 . . . 4  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
51, 4syl5ib 221 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  ->  -.  ( Y  \  A )  e.  L
) )
64biimprd 225 . . . . 5  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( Lt  A )  e.  ( Fil `  A ) ) )
7 elpwi 3966 . . . . . . 7  |-  ( x  e.  ~P A  ->  x  C_  A )
8 simpll 754 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  L  e.  ( UFil `  Y )
)
9 simpr 461 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  x  C_  A
)
10 simplr 756 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  A  C_  Y
)
119, 10sstrd 3454 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  x  C_  Y
)
12 ufilss 20700 . . . . . . . . 9  |-  ( ( L  e.  ( UFil `  Y )  /\  x  C_  Y )  ->  (
x  e.  L  \/  ( Y  \  x
)  e.  L ) )
138, 11, 12syl2anc 661 . . . . . . . 8  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  \/  ( Y  \  x )  e.  L ) )
14 id 23 . . . . . . . . . . . . 13  |-  ( A 
C_  Y  ->  A  C_  Y )
15 elfvdm 5877 . . . . . . . . . . . . 13  |-  ( L  e.  ( UFil `  Y
)  ->  Y  e.  dom  UFil )
16 ssexg 4542 . . . . . . . . . . . . 13  |-  ( ( A  C_  Y  /\  Y  e.  dom  UFil )  ->  A  e.  _V )
1714, 15, 16syl2anr 478 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  A  e.  _V )
18 elrestr 15045 . . . . . . . . . . . . 13  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V  /\  x  e.  L )  ->  (
x  i^i  A )  e.  ( Lt  A ) )
19183expia 1201 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V )  ->  (
x  e.  L  -> 
( x  i^i  A
)  e.  ( Lt  A ) ) )
2017, 19syldan 470 . . . . . . . . . . 11  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
x  e.  L  -> 
( x  i^i  A
)  e.  ( Lt  A ) ) )
2120adantr 465 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  ->  ( x  i^i  A )  e.  ( Lt  A ) ) )
22 df-ss 3430 . . . . . . . . . . . 12  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
239, 22sylib 198 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  i^i  A )  =  x )
2423eleq1d 2473 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( (
x  i^i  A )  e.  ( Lt  A )  <->  x  e.  ( Lt  A ) ) )
2521, 24sylibd 216 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  ->  x  e.  ( Lt  A ) ) )
26 indif1 3696 . . . . . . . . . . . 12  |-  ( ( Y  \  x )  i^i  A )  =  ( ( Y  i^i  A )  \  x )
27 simplr 756 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  A  C_  Y )
28 dfss1 3646 . . . . . . . . . . . . . 14  |-  ( A 
C_  Y  <->  ( Y  i^i  A )  =  A )
2927, 28sylib 198 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( Y  i^i  A )  =  A )
3029difeq1d 3562 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  i^i  A
)  \  x )  =  ( A  \  x ) )
3126, 30syl5eq 2457 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  \  x
)  i^i  A )  =  ( A  \  x ) )
32 simpll 754 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  L  e.  ( UFil `  Y
) )
3317adantr 465 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  A  e.  _V )
34 simprr 760 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( Y  \  x )  e.  L )
35 elrestr 15045 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V  /\  ( Y 
\  x )  e.  L )  ->  (
( Y  \  x
)  i^i  A )  e.  ( Lt  A ) )
3632, 33, 34, 35syl3anc 1232 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  \  x
)  i^i  A )  e.  ( Lt  A ) )
3731, 36eqeltrrd 2493 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( A  \  x )  e.  ( Lt  A ) )
3837expr 615 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( ( Y  \  x )  e.  L  ->  ( A  \  x )  e.  ( Lt  A ) ) )
3925, 38orim12d 841 . . . . . . . 8  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( (
x  e.  L  \/  ( Y  \  x
)  e.  L )  ->  ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) )
4013, 39mpd 15 . . . . . . 7  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) )
417, 40sylan2 474 . . . . . 6  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  e.  ~P A )  ->  (
x  e.  ( Lt  A )  \/  ( A 
\  x )  e.  ( Lt  A ) ) )
4241ralrimiva 2820 . . . . 5  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  A. x  e.  ~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) )
436, 42jctird 544 . . . 4  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( ( Lt  A )  e.  ( Fil `  A
)  /\  A. x  e.  ~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) ) )
44 isufil 20698 . . . 4  |-  ( ( Lt  A )  e.  (
UFil `  A )  <->  ( ( Lt  A )  e.  ( Fil `  A )  /\  A. x  e. 
~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) )
4543, 44syl6ibr 229 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( Lt  A )  e.  (
UFil `  A )
) )
465, 45impbid 192 . 2  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
47 ufilb 20701 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  A  e.  L  <->  ( Y  \  A )  e.  L ) )
4847con1bid 330 . 2  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  <->  A  e.  L ) )
4946, 48bitrd 255 1  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  A  e.  L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    \/ wo 368    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   _Vcvv 3061    \ cdif 3413    i^i cin 3415    C_ wss 3416   ~Pcpw 3957   dom cdm 4825   ` cfv 5571  (class class class)co 6280   ↾t crest 15037   Filcfil 20640   UFilcufil 20694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-rest 15039  df-fbas 18738  df-fg 18739  df-fil 20641  df-ufil 20696
This theorem is referenced by:  ssufl  20713
  Copyright terms: Public domain W3C validator