Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniffsupp Structured version   Visualization version   GIF version

Theorem sniffsupp 8198
 Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
sniffsupp.i (𝜑𝐼𝑉)
sniffsupp.0 (𝜑0𝑊)
sniffsupp.f 𝐹 = (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
Assertion
Ref Expression
sniffsupp (𝜑𝐹 finSupp 0 )
Distinct variable groups:   𝑥,𝐼   𝑥,𝑋   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sniffsupp
StepHypRef Expression
1 sniffsupp.f . 2 𝐹 = (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
2 snfi 7923 . . . 4 {𝑋} ∈ Fin
3 eldifsni 4261 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥𝑋)
43adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥𝑋)
54neneqd 2787 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋)
65iffalsed 4047 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 )
7 sniffsupp.i . . . . 5 (𝜑𝐼𝑉)
86, 7suppss2 7216 . . . 4 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
9 ssfi 8065 . . . 4 (({𝑋} ∈ Fin ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)
102, 8, 9sylancr 694 . . 3 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)
11 funmpt 5840 . . . . 5 Fun (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
1211a1i 11 . . . 4 (𝜑 → Fun (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )))
13 mptexg 6389 . . . . 5 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V)
147, 13syl 17 . . . 4 (𝜑 → (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V)
15 sniffsupp.0 . . . 4 (𝜑0𝑊)
16 funisfsupp 8163 . . . 4 ((Fun (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0𝑊) → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin))
1712, 14, 15, 16syl3anc 1318 . . 3 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin))
1810, 17mpbird 246 . 2 (𝜑 → (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 )
191, 18syl5eqbr 4618 1 (𝜑𝐹 finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  Fun wfun 5798  (class class class)co 6549   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-supp 7183  df-1o 7447  df-er 7629  df-en 7842  df-fin 7845  df-fsupp 8159 This theorem is referenced by:  dprdfid  18239  snifpsrbag  19187
 Copyright terms: Public domain W3C validator