MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfien2 Structured version   Visualization version   GIF version

Theorem mapfien2 8197
Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
mapfien2.s 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 0 }
mapfien2.t 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien2.ac (𝜑𝐴𝐶)
mapfien2.bd (𝜑𝐵𝐷)
mapfien2.z (𝜑0𝐵)
mapfien2.w (𝜑𝑊𝐷)
Assertion
Ref Expression
mapfien2 (𝜑𝑆𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥, 0   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem mapfien2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapfien2.z . . 3 (𝜑0𝐵)
2 mapfien2.w . . 3 (𝜑𝑊𝐷)
3 mapfien2.bd . . 3 (𝜑𝐵𝐷)
4 enfixsn 7954 . . 3 (( 0𝐵𝑊𝐷𝐵𝐷) → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
51, 2, 3, 4syl3anc 1318 . 2 (𝜑 → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
6 mapfien2.ac . . . . 5 (𝜑𝐴𝐶)
7 bren 7850 . . . . 5 (𝐴𝐶 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝐶)
86, 7sylib 207 . . . 4 (𝜑 → ∃𝑧 𝑧:𝐴1-1-onto𝐶)
9 mapfien2.s . . . . . . . . . 10 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 0 }
10 eqid 2610 . . . . . . . . . 10 {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )}
11 eqid 2610 . . . . . . . . . 10 (𝑦0 ) = (𝑦0 )
12 f1ocnv 6062 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝐶𝑧:𝐶1-1-onto𝐴)
13123ad2ant2 1076 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑧:𝐶1-1-onto𝐴)
14 simp3 1056 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑦:𝐵1-1-onto𝐷)
1563ad2ant1 1075 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴𝐶)
16 relen 7846 . . . . . . . . . . . 12 Rel ≈
1716brrelexi 5082 . . . . . . . . . . 11 (𝐴𝐶𝐴 ∈ V)
1815, 17syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴 ∈ V)
1933ad2ant1 1075 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵𝐷)
2016brrelexi 5082 . . . . . . . . . . 11 (𝐵𝐷𝐵 ∈ V)
2119, 20syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵 ∈ V)
2216brrelex2i 5083 . . . . . . . . . . 11 (𝐴𝐶𝐶 ∈ V)
2315, 22syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐶 ∈ V)
2416brrelex2i 5083 . . . . . . . . . . 11 (𝐵𝐷𝐷 ∈ V)
2519, 24syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐷 ∈ V)
2613ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 0𝐵)
279, 10, 11, 13, 14, 18, 21, 23, 25, 26mapfien 8196 . . . . . . . . 9 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → (𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
28 ovex 6577 . . . . . . . . . . 11 (𝐵𝑚 𝐴) ∈ V
299, 28rabex2 4742 . . . . . . . . . 10 𝑆 ∈ V
3029f1oen 7862 . . . . . . . . 9 ((𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
32313adant3r 1315 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆 ≈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
33 breq2 4587 . . . . . . . . . . 11 ((𝑦0 ) = 𝑊 → (𝑥 finSupp (𝑦0 ) ↔ 𝑥 finSupp 𝑊))
3433rabbidv 3164 . . . . . . . . . 10 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊})
35 mapfien2.t . . . . . . . . . 10 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
3634, 35syl6eqr 2662 . . . . . . . . 9 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3736adantl 481 . . . . . . . 8 ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
38373ad2ant3 1077 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3932, 38breqtrd 4609 . . . . . 6 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆𝑇)
40393exp 1256 . . . . 5 (𝜑 → (𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
4140exlimdv 1848 . . . 4 (𝜑 → (∃𝑧 𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
428, 41mpd 15 . . 3 (𝜑 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
4342exlimdv 1848 . 2 (𝜑 → (∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
445, 43mpd 15 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {crab 2900  Vcvv 3173   class class class wbr 4583  cmpt 4643  ccnv 5037  ccom 5042  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cen 7838   finSupp cfsupp 8158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fsupp 8159
This theorem is referenced by:  frlmpwfi  36686
  Copyright terms: Public domain W3C validator