MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftdm Structured version   Visualization version   GIF version

Theorem shftdm 13659
Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftdm (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem shftdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4 𝐹 ∈ V
21shftfval 13658 . . 3 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32dmeqd 5248 . 2 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4 19.42v 1905 . . . . 5 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
5 ovex 6577 . . . . . . 7 (𝑥𝐴) ∈ V
65eldm 5243 . . . . . 6 ((𝑥𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥𝐴)𝐹𝑦)
76anbi2i 726 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
84, 7bitr4i 266 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹))
98abbii 2726 . . 3 {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
10 dmopab 5257 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
11 df-rab 2905 . . 3 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
129, 10, 113eqtr4i 2642 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹}
133, 12syl6eq 2660 1 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  {crab 2900  Vcvv 3173   class class class wbr 4583  {copab 4642  dom cdm 5038  (class class class)co 6549  cc 9813  cmin 10145   shift cshi 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-shft 13655
This theorem is referenced by:  shftfn  13661
  Copyright terms: Public domain W3C validator