Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab Structured version   Visualization version   GIF version

Theorem dmopab 5257
 Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
dmopab dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopab
StepHypRef Expression
1 nfopab1 4651 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab2 4652 . . 3 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
31, 2dfdmf 5239 . 2 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦}
4 df-br 4584 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabid 4907 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
64, 5bitri 263 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
76exbii 1764 . . 3 (∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑)
87abbii 2726 . 2 {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑}
93, 8eqtri 2632 1 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ⟨cop 4131   class class class wbr 4583  {copab 4642  dom cdm 5038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-dm 5048 This theorem is referenced by:  dmopabss  5258  dmopab3  5259  mptfnf  5928  opabiotadm  6170  fndmin  6232  dmoprab  6639  zfrep6  7027  hartogslem1  8330  rankf  8540  dfac3  8827  axdc2lem  9153  shftdm  13659  dfiso2  16255  adjeu  28132
 Copyright terms: Public domain W3C validator