MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  respreima Structured version   Visualization version   GIF version

Theorem respreima 6252
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))

Proof of Theorem respreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 5833 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elin 3758 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
3 ancom 465 . . . . . . . . 9 ((𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
42, 3bitri 263 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
54anbi1i 727 . . . . . . 7 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴))
6 fvres 6117 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
76eleq1d 2672 . . . . . . . . 9 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
87adantl 481 . . . . . . . 8 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
98pm5.32i 667 . . . . . . 7 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
105, 9bitri 263 . . . . . 6 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
1110a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴)))
12 an32 835 . . . . 5 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵))
1311, 12syl6bb 275 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
14 fnfun 5902 . . . . . . . 8 (𝐹 Fn dom 𝐹 → Fun 𝐹)
15 funres 5843 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐵))
1614, 15syl 17 . . . . . . 7 (𝐹 Fn dom 𝐹 → Fun (𝐹𝐵))
17 dmres 5339 . . . . . . 7 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1816, 17jctir 559 . . . . . 6 (𝐹 Fn dom 𝐹 → (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
19 df-fn 5807 . . . . . 6 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
2018, 19sylibr 223 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹𝐵) Fn (𝐵 ∩ dom 𝐹))
21 elpreima 6245 . . . . 5 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
2220, 21syl 17 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
23 elin 3758 . . . . 5 (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ (𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵))
24 elpreima 6245 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
2524anbi1d 737 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2623, 25syl5bb 271 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2713, 22, 263bitr4d 299 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
281, 27sylbi 206 . 2 (Fun 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
2928eqrdv 2608 1 (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cin 3539  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by:  paste  20908  restmetu  22185  eulerpartlemt  29760  smfres  39675
  Copyright terms: Public domain W3C validator