MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  respreima Structured version   Unicode version

Theorem respreima 6015
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )

Proof of Theorem respreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfn 5621 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 elin 3646 . . . . . . . . 9  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  B  /\  x  e.  dom  F ) )
3 ancom 451 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  dom  F )  <-> 
( x  e.  dom  F  /\  x  e.  B
) )
42, 3bitri 252 . . . . . . . 8  |-  ( x  e.  ( B  i^i  dom 
F )  <->  ( x  e.  dom  F  /\  x  e.  B ) )
54anbi1i 699 . . . . . . 7  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  (
( F  |`  B ) `
 x )  e.  A ) )
6 fvres 5886 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
76eleq1d 2489 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  A  <->  ( F `  x )  e.  A
) )
87adantl 467 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  x  e.  B
)  ->  ( (
( F  |`  B ) `
 x )  e.  A  <->  ( F `  x )  e.  A
) )
98pm5.32i 641 . . . . . . 7  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) )
105, 9bitri 252 . . . . . 6  |-  ( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x
)  e.  A )  <-> 
( ( x  e. 
dom  F  /\  x  e.  B )  /\  ( F `  x )  e.  A ) )
1110a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  x  e.  B )  /\  ( F `  x
)  e.  A ) ) )
12 an32 805 . . . . 5  |-  ( ( ( x  e.  dom  F  /\  x  e.  B
)  /\  ( F `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
)
1311, 12syl6bb 264 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
14 fnfun 5682 . . . . . . . 8  |-  ( F  Fn  dom  F  ->  Fun  F )
15 funres 5631 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
1614, 15syl 17 . . . . . . 7  |-  ( F  Fn  dom  F  ->  Fun  ( F  |`  B ) )
17 dmres 5136 . . . . . . 7  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
1816, 17jctir 540 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
19 df-fn 5595 . . . . . 6  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  ( B  i^i  dom 
F ) ) )
2018, 19sylibr 215 . . . . 5  |-  ( F  Fn  dom  F  -> 
( F  |`  B )  Fn  ( B  i^i  dom 
F ) )
21 elpreima 6008 . . . . 5  |-  ( ( F  |`  B )  Fn  ( B  i^i  dom  F )  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
2220, 21syl 17 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  ( x  e.  ( B  i^i  dom  F )  /\  ( ( F  |`  B ) `  x )  e.  A
) ) )
23 elin 3646 . . . . 5  |-  ( x  e.  ( ( `' F " A )  i^i  B )  <->  ( x  e.  ( `' F " A )  /\  x  e.  B ) )
24 elpreima 6008 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " A )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  A
) ) )
2524anbi1d 709 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( `' F " A )  /\  x  e.  B )  <->  ( (
x  e.  dom  F  /\  ( F `  x
)  e.  A )  /\  x  e.  B
) ) )
2623, 25syl5bb 260 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( ( `' F " A )  i^i  B
)  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  /\  x  e.  B )
) )
2713, 22, 263bitr4d 288 . . 3  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
281, 27sylbi 198 . 2  |-  ( Fun 
F  ->  ( x  e.  ( `' ( F  |`  B ) " A
)  <->  x  e.  (
( `' F " A )  i^i  B
) ) )
2928eqrdv 2417 1  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" A )  =  ( ( `' F " A )  i^i  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867    i^i cin 3432   `'ccnv 4844   dom cdm 4845    |` cres 4847   "cima 4848   Fun wfun 5586    Fn wfn 5587   ` cfv 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600
This theorem is referenced by:  paste  20234  restmetu  21509  eulerpartlemt  29027
  Copyright terms: Public domain W3C validator