Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reps Structured version   Visualization version   GIF version

Theorem reps 13368
 Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
reps ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑆
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem reps
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . . 3 (𝑆𝑉𝑆 ∈ V)
21adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑆 ∈ V)
3 simpr 476 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4 ovex 6577 . . 3 (0..^𝑁) ∈ V
5 mptexg 6389 . . 3 ((0..^𝑁) ∈ V → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
64, 5mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V)
7 oveq2 6557 . . . . 5 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
87adantl 481 . . . 4 ((𝑠 = 𝑆𝑛 = 𝑁) → (0..^𝑛) = (0..^𝑁))
9 simpll 786 . . . 4 (((𝑠 = 𝑆𝑛 = 𝑁) ∧ 𝑥 ∈ (0..^𝑛)) → 𝑠 = 𝑆)
108, 9mpteq12dva 4662 . . 3 ((𝑠 = 𝑆𝑛 = 𝑁) → (𝑥 ∈ (0..^𝑛) ↦ 𝑠) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
11 df-reps 13161 . . 3 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
1210, 11ovmpt2ga 6688 . 2 ((𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (0..^𝑁) ↦ 𝑆) ∈ V) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
132, 3, 6, 12syl3anc 1318 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643  (class class class)co 6549  0cc0 9815  ℕ0cn0 11169  ..^cfzo 12334   repeatS creps 13153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-reps 13161 This theorem is referenced by:  repsconst  13370  repsf  13371  repswsymb  13372  repswswrd  13382  repswccat  13383  repswrevw  13384  repsco  13436
 Copyright terms: Public domain W3C validator