MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsco Structured version   Visualization version   GIF version

Theorem repsco 13436
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
repsco ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))

Proof of Theorem repsco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝐴)
2 simpl2 1058 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
3 simpr 476 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
4 repswsymb 13372 . . . . 5 ((𝑆𝐴𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
51, 2, 3, 4syl3anc 1318 . . . 4 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
65fveq2d 6107 . . 3 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹𝑆))
76mpteq2dva 4672 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
8 simp3 1056 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
9 repsf 13371 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
1093adant3 1074 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
11 fcompt 6306 . . 3 ((𝐹:𝐴𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
128, 10, 11syl2anc 691 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
13 fvex 6113 . . . . . 6 (𝐹𝑆) ∈ V
1413a1i 11 . . . . 5 (𝑆𝐴 → (𝐹𝑆) ∈ V)
1514anim1i 590 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
16153adant3 1074 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
17 reps 13368 . . 3 (((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
1816, 17syl 17 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
197, 12, 183eqtr4d 2654 1 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  0cn0 11169  ..^cfzo 12334   repeatS creps 13153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-reps 13161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator