MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   GIF version

Theorem repswswrd 13382
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption N <_ L is required, because otherwise ( L < N ): ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = ∅, but for M < N (𝑆 repeatS (𝑁𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))

Proof of Theorem repswswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repsw 13373 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿) ∈ Word 𝑉)
2 nn0z 11277 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 11277 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
42, 3anim12i 588 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
51, 4anim12i 588 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
6 3anass 1035 . . . . 5 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑆 repeatS 𝐿) ∈ Word 𝑉 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
75, 6sylibr 223 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
873adant3 1074 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 swrdval 13269 . . 3 (((𝑆 repeatS 𝐿) ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
108, 9syl 17 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
11 repsf 13371 . . . . . 6 ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
12113ad2ant1 1075 . . . . 5 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉)
13 fdm 5964 . . . . 5 ((𝑆 repeatS 𝐿):(0..^𝐿)⟶𝑉 → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1412, 13syl 17 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → dom (𝑆 repeatS 𝐿) = (0..^𝐿))
1514sseq2d 3596 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿) ↔ (𝑀..^𝑁) ⊆ (0..^𝐿)))
1615ifbid 4058 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ dom (𝑆 repeatS 𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅))
17 fzon 12358 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
184, 17syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
1918adantl 481 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
2019biimpac 502 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) = ∅)
21 0ss 3924 . . . . . . . 8 ∅ ⊆ (0..^𝐿)
2220, 21syl6eqss 3618 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀..^𝑁) ⊆ (0..^𝐿))
23 iftrue 4042 . . . . . . 7 ((𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
2422, 23syl 17 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
25 nn0re 11178 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
26 nn0re 11178 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2725, 26anim12ci 589 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2827adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
29 suble0 10421 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3028, 29syl 17 . . . . . . . . 9 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑁𝑀) ≤ 0 ↔ 𝑁𝑀))
3130biimparc 503 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ≤ 0)
32 0z 11265 . . . . . . . . 9 0 ∈ ℤ
33 zsubcl 11296 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
343, 2, 33syl2anr 494 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
3534adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀) ∈ ℤ)
3635adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝑀) ∈ ℤ)
37 fzon 12358 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3832, 36, 37sylancr 694 . . . . . . . 8 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ≤ 0 ↔ (0..^(𝑁𝑀)) = ∅))
3931, 38mpbid 221 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0..^(𝑁𝑀)) = ∅)
4039mpteq1d 4666 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
41 oveq2 6557 . . . . . . . . . . . . 13 (𝑀 = 𝑁 → (𝑁𝑀) = (𝑁𝑁))
4241oveq2d 6565 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = (𝑆 repeatS (𝑁𝑁)))
43 nn0cn 11179 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4544subidd 10259 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑁) = 0)
4645adantl 481 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑁) = 0)
4746oveq2d 6565 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = (𝑆 repeatS 0))
48 repsw0 13375 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
4948ad2antrr 758 . . . . . . . . . . . . 13 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS 0) = ∅)
5047, 49eqtrd 2644 . . . . . . . . . . . 12 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑆 repeatS (𝑁𝑁)) = ∅)
5142, 50sylan9eqr 2666 . . . . . . . . . . 11 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑀 = 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅)
5251ex 449 . . . . . . . . . 10 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5352adantl 481 . . . . . . . . 9 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑀 = 𝑁 → (𝑆 repeatS (𝑁𝑀)) = ∅))
5453com12 32 . . . . . . . 8 (𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
55 elnn0z 11267 . . . . . . . . . . . . . . 15 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)))
56 subge0 10420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5726, 25, 56syl2anr 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
5825, 26anim12i 588 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
59 letri3 10002 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6160biimprd 237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6261expd 451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 → (𝑁𝑀𝑀 = 𝑁)))
6357, 62sylbid 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ≤ (𝑁𝑀) → (𝑁𝑀𝑀 = 𝑁)))
6463com23 84 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6564adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁)))
6665impcom 445 . . . . . . . . . . . . . . . . 17 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (0 ≤ (𝑁𝑀) → 𝑀 = 𝑁))
6766com12 32 . . . . . . . . . . . . . . . 16 (0 ≤ (𝑁𝑀) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6867adantl 481 . . . . . . . . . . . . . . 15 (((𝑁𝑀) ∈ ℤ ∧ 0 ≤ (𝑁𝑀)) → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
6955, 68sylbi 206 . . . . . . . . . . . . . 14 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 = 𝑁))
7069com12 32 . . . . . . . . . . . . 13 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑁𝑀) ∈ ℕ0𝑀 = 𝑁))
7170con3d 147 . . . . . . . . . . . 12 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (¬ 𝑀 = 𝑁 → ¬ (𝑁𝑀) ∈ ℕ0))
7271impcom 445 . . . . . . . . . . 11 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → ¬ (𝑁𝑀) ∈ ℕ0)
73 df-nel 2783 . . . . . . . . . . 11 ((𝑁𝑀) ∉ ℕ0 ↔ ¬ (𝑁𝑀) ∈ ℕ0)
7472, 73sylibr 223 . . . . . . . . . 10 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑁𝑀) ∉ ℕ0)
75 repsundef 13369 . . . . . . . . . 10 ((𝑁𝑀) ∉ ℕ0 → (𝑆 repeatS (𝑁𝑀)) = ∅)
7674, 75syl 17 . . . . . . . . 9 ((¬ 𝑀 = 𝑁 ∧ (𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
7776ex 449 . . . . . . . 8 𝑀 = 𝑁 → ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅))
7854, 77pm2.61i 175 . . . . . . 7 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑆 repeatS (𝑁𝑀)) = ∅)
79 mpt0 5934 . . . . . . 7 (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = ∅
8078, 79syl6reqr 2663 . . . . . 6 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 ∈ ∅ ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
8124, 40, 803eqtrd 2648 . . . . 5 ((𝑁𝑀 ∧ ((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
8281expcom 450 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
83823adant3 1074 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
84 ltnle 9996 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8558, 84syl 17 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
8685bicomd 212 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀 < 𝑁))
87863ad2ant2 1076 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀𝑀 < 𝑁))
8823adantr 480 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))))
8943ad2ant2 1076 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9089adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
91 0zd 11266 . . . . . . . . . . . . 13 (𝑆𝑉 → 0 ∈ ℤ)
92 nn0z 11277 . . . . . . . . . . . . 13 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
9391, 92anim12i 588 . . . . . . . . . . . 12 ((𝑆𝑉𝐿 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
94933ad2ant1 1075 . . . . . . . . . . 11 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9594adantr 480 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
96 simpr 476 . . . . . . . . . 10 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
97 ssfzo12bi 12429 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
9890, 95, 96, 97syl3anc 1318 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) ↔ (0 ≤ 𝑀𝑁𝐿)))
99 simpl1l 1105 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝑆𝑉)
10099ad2antrr 758 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑆𝑉)
101 simpl1r 1106 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ0)
102101ad2antrr 758 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ0)
103 elfzonn0 12380 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) → 𝑥 ∈ ℕ0)
104 nn0addcl 11205 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℕ0)
105104expcom 450 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
106105adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
1071063ad2ant2 1076 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
108107ad2antrr 758 . . . . . . . . . . . . . . . 16 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℕ0))
109103, 108syl5com 31 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) ∈ ℕ0))
110109impcom 445 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ ℕ0)
11192adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
1121113ad2ant1 1075 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → 𝐿 ∈ ℤ)
113112adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℤ)
114 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
115114adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑉𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
116115, 58anim12ci 589 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
117 df-3an 1033 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) ↔ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ))
118116, 117sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
119 ltletr 10008 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
120118, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 𝑀 < 𝐿))
121 elnn0z 11267 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
122 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 0 ∈ ℝ)
123 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝑀 ∈ ℝ)
125115adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → 𝐿 ∈ ℝ)
126 lelttr 10007 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
127122, 124, 125, 126syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → ((0 ≤ 𝑀𝑀 < 𝐿) → 0 < 𝐿))
128127expd 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ (𝑆𝑉𝐿 ∈ ℕ0)) → (0 ≤ 𝑀 → (𝑀 < 𝐿 → 0 < 𝐿)))
129128impancom 455 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
130121, 129sylbi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
131130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑆𝑉𝐿 ∈ ℕ0) → (𝑀 < 𝐿 → 0 < 𝐿)))
132131impcom 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 → 0 < 𝐿))
133120, 132syld 46 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 < 𝑁𝑁𝐿) → 0 < 𝐿))
134133expcomd 453 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑀 < 𝑁 → 0 < 𝐿)))
1351343impia 1253 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 < 𝐿))
136135imp 444 . . . . . . . . . . . . . . . 16 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 < 𝐿)
137 elnnz 11264 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿))
138113, 136, 137sylanbrc 695 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 𝐿 ∈ ℕ)
139138ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝐿 ∈ ℕ)
140 elfzo0 12376 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0..^(𝑁𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)))
141 nn0readdcl 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 + 𝑀) ∈ ℝ)
142141expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ0 → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
143142ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 ∈ ℕ0 → (𝑥 + 𝑀) ∈ ℝ))
144143impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 + 𝑀) ∈ ℝ)
14526adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
146145adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
147146adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑁 ∈ ℝ)
148114ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝐿 ∈ ℝ)
149144, 147, 1483jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
150149ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ)))
152151impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
154 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
155154adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑥 ∈ ℝ)
15625ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℝ)
157156adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → 𝑀 ∈ ℝ)
158155, 157, 147ltaddsubd 10506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁𝑥 < (𝑁𝑀)))
159 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁))
160159ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑁𝐿 → ((𝑥 + 𝑀) < 𝑁 → (𝑥 + 𝑀) < 𝑁)))
161160com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → ((𝑥 + 𝑀) < 𝑁 → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
162158, 161sylbird 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ (𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑥 < (𝑁𝑀) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
163162impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁)))
164163impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝑁))
165164impac 649 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → ((𝑥 + 𝑀) < 𝑁𝑁𝐿))
166 ltletr 10008 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((𝑥 + 𝑀) < 𝑁𝑁𝐿) → (𝑥 + 𝑀) < 𝐿))
167153, 165, 166sylc 63 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ (𝑥 ∈ ℕ0𝑥 < (𝑁𝑀))) ∧ 𝑁𝐿) → (𝑥 + 𝑀) < 𝐿)
168167exp31 628 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑁𝐿 → (𝑥 + 𝑀) < 𝐿)))
169168com23 84 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿)))
170169ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
171170adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑉𝐿 ∈ ℕ0) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐿 → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))))
1721713imp 1249 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
173172ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (𝑥 + 𝑀) < 𝐿))
174173com12 32 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
1751743adant2 1073 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑥 < (𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
176140, 175sylbi 206 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^(𝑁𝑀)) → (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 + 𝑀) < 𝐿))
177176impcom 445 . . . . . . . . . . . . . 14 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) < 𝐿)
178 elfzo0 12376 . . . . . . . . . . . . . 14 ((𝑥 + 𝑀) ∈ (0..^𝐿) ↔ ((𝑥 + 𝑀) ∈ ℕ0𝐿 ∈ ℕ ∧ (𝑥 + 𝑀) < 𝐿))
179110, 139, 177, 178syl3anbrc 1239 . . . . . . . . . . . . 13 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^𝐿))
180 repswsymb 13372 . . . . . . . . . . . . 13 ((𝑆𝑉𝐿 ∈ ℕ0 ∧ (𝑥 + 𝑀) ∈ (0..^𝐿)) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
181100, 102, 179, 180syl3anc 1318 . . . . . . . . . . . 12 ((((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀)) = 𝑆)
182181mpteq2dva 4672 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
183343ad2ant2 1076 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁𝑀) ∈ ℤ)
184183adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℤ)
185583ad2ant2 1076 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
186 ltle 10005 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
187185, 186syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁𝑀𝑁))
188273ad2ant2 1076 . . . . . . . . . . . . . . . . . 18 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
189188, 56syl 17 . . . . . . . . . . . . . . . . 17 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
190187, 189sylibrd 248 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → 0 ≤ (𝑁𝑀)))
191190imp 444 . . . . . . . . . . . . . . 15 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → 0 ≤ (𝑁𝑀))
192184, 191, 55sylanbrc 695 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑁𝑀) ∈ ℕ0)
19399, 192jca 553 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
194193adantr 480 . . . . . . . . . . . 12 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0))
195 reps 13368 . . . . . . . . . . . . 13 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑆 repeatS (𝑁𝑀)) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆))
196195eqcomd 2616 . . . . . . . . . . . 12 ((𝑆𝑉 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
197194, 196syl 17 . . . . . . . . . . 11 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ 𝑆) = (𝑆 repeatS (𝑁𝑀)))
198182, 197eqtrd 2644 . . . . . . . . . 10 (((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) ∧ (0 ≤ 𝑀𝑁𝐿)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
199198ex 449 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((0 ≤ 𝑀𝑁𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
20098, 199sylbid 229 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀))))
201200impcom 445 . . . . . . 7 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))) = (𝑆 repeatS (𝑁𝑀)))
20288, 201eqtrd 2644 . . . . . 6 (((𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
203 iffalse 4045 . . . . . . . 8 (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
204203adantr 480 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = ∅)
20598notbid 307 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ↔ ¬ (0 ≤ 𝑀𝑁𝐿)))
206 ianor 508 . . . . . . . . . . 11 (¬ (0 ≤ 𝑀𝑁𝐿) ↔ (¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿))
207 nn0ge0 11195 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
208 pm2.24 120 . . . . . . . . . . . . . . . . 17 (0 ≤ 𝑀 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
209207, 208syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
210209adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2112103ad2ant2 1076 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
212211adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 0 ≤ 𝑀 → (𝑆 repeatS (𝑁𝑀)) = ∅))
213212com12 32 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑀 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
214 pm2.24 120 . . . . . . . . . . . . . . 15 (𝑁𝐿 → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
2152143ad2ant3 1077 . . . . . . . . . . . . . 14 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
216215adantr 480 . . . . . . . . . . . . 13 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝐿 → (𝑆 repeatS (𝑁𝑀)) = ∅))
217216com12 32 . . . . . . . . . . . 12 𝑁𝐿 → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
218213, 217jaoi 393 . . . . . . . . . . 11 ((¬ 0 ≤ 𝑀 ∨ ¬ 𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
219206, 218sylbi 206 . . . . . . . . . 10 (¬ (0 ≤ 𝑀𝑁𝐿) → ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (𝑆 repeatS (𝑁𝑀)) = ∅))
220219com12 32 . . . . . . . . 9 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (0 ≤ 𝑀𝑁𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
221205, 220sylbid 229 . . . . . . . 8 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → (¬ (𝑀..^𝑁) ⊆ (0..^𝐿) → (𝑆 repeatS (𝑁𝑀)) = ∅))
222221impcom 445 . . . . . . 7 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → (𝑆 repeatS (𝑁𝑀)) = ∅)
223204, 222eqtr4d 2647 . . . . . 6 ((¬ (𝑀..^𝑁) ⊆ (0..^𝐿) ∧ (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁)) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
224202, 223pm2.61ian 827 . . . . 5 ((((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) ∧ 𝑀 < 𝑁) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
225224ex 449 . . . 4 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (𝑀 < 𝑁 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22687, 225sylbid 229 . . 3 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → (¬ 𝑁𝑀 → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀))))
22783, 226pm2.61d 169 . 2 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → if((𝑀..^𝑁) ⊆ (0..^𝐿), (𝑥 ∈ (0..^(𝑁𝑀)) ↦ ((𝑆 repeatS 𝐿)‘(𝑥 + 𝑀))), ∅) = (𝑆 repeatS (𝑁𝑀)))
22810, 16, 2273eqtrd 2648 1 (((𝑆𝑉𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝐿) → ((𝑆 repeatS 𝐿) substr ⟨𝑀, 𝑁⟩) = (𝑆 repeatS (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  wss 3540  c0 3874  ifcif 4036  cop 4131   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334  Word cword 13146   substr csubstr 13150   repeatS creps 13153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-substr 13158  df-reps 13161
This theorem is referenced by:  repswcshw  13409
  Copyright terms: Public domain W3C validator