Proof of Theorem opnregcld
Step | Hyp | Ref
| Expression |
1 | | opnregcld.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | ntropn 20663 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽) |
3 | | eqcom 2617 |
. . . . 5
⊢
(((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
4 | 3 | biimpi 205 |
. . . 4
⊢
(((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
5 | | fveq2 6103 |
. . . . . 6
⊢ (𝑜 = ((int‘𝐽)‘𝐴) → ((cls‘𝐽)‘𝑜) = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) |
6 | 5 | eqeq2d 2620 |
. . . . 5
⊢ (𝑜 = ((int‘𝐽)‘𝐴) → (𝐴 = ((cls‘𝐽)‘𝑜) ↔ 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴)))) |
7 | 6 | rspcev 3282 |
. . . 4
⊢
((((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ 𝐴 = ((cls‘𝐽)‘((int‘𝐽)‘𝐴))) → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜)) |
8 | 2, 4, 7 | syl2an 493 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴) → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜)) |
9 | 8 | ex 449 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 → ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜))) |
10 | | simpl 472 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝐽 ∈ Top) |
11 | 1 | eltopss 20537 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
12 | 1 | clsss3 20673 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋) |
13 | 11, 12 | syldan 486 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝑋) |
14 | 1 | ntrss2 20671 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) |
15 | 13, 14 | syldan 486 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) |
16 | 1 | clsss 20668 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ ((cls‘𝐽)‘𝑜)) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜))) |
17 | 10, 13, 15, 16 | syl3anc 1318 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘((cls‘𝐽)‘𝑜))) |
18 | 1 | clsidm 20681 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜)) |
19 | 11, 18 | syldan 486 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑜)) = ((cls‘𝐽)‘𝑜)) |
20 | 17, 19 | sseqtrd 3604 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) ⊆ ((cls‘𝐽)‘𝑜)) |
21 | 1 | ntrss3 20674 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋) |
22 | 13, 21 | syldan 486 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋) |
23 | | simpr 476 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ∈ 𝐽) |
24 | 1 | sscls 20670 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ 𝑋) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜)) |
25 | 11, 24 | syldan 486 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ ((cls‘𝐽)‘𝑜)) |
26 | 1 | ssntr 20672 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧
((cls‘𝐽)‘𝑜) ⊆ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ((cls‘𝐽)‘𝑜))) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) |
27 | 10, 13, 23, 25, 26 | syl22anc 1319 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) |
28 | 1 | clsss 20668 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘((cls‘𝐽)‘𝑜)) ⊆ 𝑋 ∧ 𝑜 ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
29 | 10, 22, 27, 28 | syl3anc 1318 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
30 | 20, 29 | eqssd 3585 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)) |
31 | 30 | adantlr 747 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜)) |
32 | | fveq2 6103 |
. . . . . 6
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → ((int‘𝐽)‘𝐴) = ((int‘𝐽)‘((cls‘𝐽)‘𝑜))) |
33 | 32 | fveq2d 6107 |
. . . . 5
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜)))) |
34 | | id 22 |
. . . . 5
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → 𝐴 = ((cls‘𝐽)‘𝑜)) |
35 | 33, 34 | eqeq12d 2625 |
. . . 4
⊢ (𝐴 = ((cls‘𝐽)‘𝑜) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ((cls‘𝐽)‘((int‘𝐽)‘((cls‘𝐽)‘𝑜))) = ((cls‘𝐽)‘𝑜))) |
36 | 31, 35 | syl5ibrcom 236 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴)) |
37 | 36 | rexlimdva 3013 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜) → ((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴)) |
38 | 9, 37 | impbid 201 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜 ∈ 𝐽 𝐴 = ((cls‘𝐽)‘𝑜))) |