Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldregopn Structured version   Visualization version   GIF version

Theorem cldregopn 31496
Description: A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldregopn ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem cldregopn
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21clscld 20661 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽))
3 eqcom 2617 . . . . 5 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
43biimpi 205 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
5 fveq2 6103 . . . . . 6 (𝑐 = ((cls‘𝐽)‘𝐴) → ((int‘𝐽)‘𝑐) = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
65eqeq2d 2620 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝐴) → (𝐴 = ((int‘𝐽)‘𝑐) ↔ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))))
76rspcev 3282 . . . 4 ((((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
82, 4, 7syl2an 493 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
98ex 449 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
10 cldrcl 20640 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
111cldss 20643 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝑐𝑋)
121ntrss2 20671 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
1310, 11, 12syl2anc 691 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
141clsss2 20686 . . . . . . . 8 ((𝑐 ∈ (Clsd‘𝐽) ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑐) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
1513, 14mpdan 699 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
161ntrss 20669 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝑋 ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
1710, 11, 15, 16syl3anc 1318 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
181ntridm 20682 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
1910, 11, 18syl2anc 691 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
201ntrss3 20674 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
2110, 11, 20syl2anc 691 . . . . . . . . 9 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
221clsss3 20673 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
2310, 21, 22syl2anc 691 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
241sscls 20670 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
2510, 21, 24syl2anc 691 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
261ntrss 20669 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2710, 23, 25, 26syl3anc 1318 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2819, 27eqsstr3d 3603 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2917, 28eqssd 3585 . . . . 5 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
3029adantl 481 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
31 fveq2 6103 . . . . . 6 (𝐴 = ((int‘𝐽)‘𝑐) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
3231fveq2d 6107 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
33 id 22 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → 𝐴 = ((int‘𝐽)‘𝑐))
3432, 33eqeq12d 2625 . . . 4 (𝐴 = ((int‘𝐽)‘𝑐) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)))
3530, 34syl5ibrcom 236 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
3635rexlimdva 3013 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
379, 36impbid 201 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540   cuni 4372  cfv 5804  Topctop 20517  Clsdccld 20630  intcnt 20631  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator