Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsinds Structured version   Visualization version   GIF version

Theorem omsinds 6976
 Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.)
Hypotheses
Ref Expression
omsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
omsinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
omsinds.3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
omsinds (𝐴 ∈ ω → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem omsinds
StepHypRef Expression
1 omsson 6961 . . 3 ω ⊆ On
2 epweon 6875 . . 3 E We On
3 wess 5025 . . 3 (ω ⊆ On → ( E We On → E We ω))
41, 2, 3mp2 9 . 2 E We ω
5 epse 5021 . 2 E Se ω
6 omsinds.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
7 omsinds.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
8 predep 5623 . . . . 5 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = (ω ∩ 𝑥))
9 ordom 6966 . . . . . . 7 Ord ω
10 ordtr 5654 . . . . . . 7 (Ord ω → Tr ω)
11 trss 4689 . . . . . . 7 (Tr ω → (𝑥 ∈ ω → 𝑥 ⊆ ω))
129, 10, 11mp2b 10 . . . . . 6 (𝑥 ∈ ω → 𝑥 ⊆ ω)
13 sseqin2 3779 . . . . . 6 (𝑥 ⊆ ω ↔ (ω ∩ 𝑥) = 𝑥)
1412, 13sylib 207 . . . . 5 (𝑥 ∈ ω → (ω ∩ 𝑥) = 𝑥)
158, 14eqtrd 2644 . . . 4 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥)
1615raleqdv 3121 . . 3 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦𝑥 𝜓))
17 omsinds.3 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
1816, 17sylbid 229 . 2 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓𝜑))
194, 5, 6, 7, 18wfis3 5638 1 (𝐴 ∈ ω → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∩ cin 3539   ⊆ wss 3540  Tr wtr 4680   E cep 4947   We wwe 4996  Predcpred 5596  Ord word 5639  Oncon0 5640  ωcom 6957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator