MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Structured version   Visualization version   GIF version

Theorem nvaddsub4 26896
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvpncan2.1 𝑋 = (BaseSet‘𝑈)
nvpncan2.2 𝐺 = ( +𝑣𝑈)
nvpncan2.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvaddsub4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 11001 . . . . . 6 -1 ∈ ℂ
2 nvpncan2.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 nvpncan2.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
4 eqid 2610 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 26869 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
61, 5mp3anr1 1413 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
763adant2 1073 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷)) = ((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷)))
87oveq2d 6565 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))))
92, 4nvscl 26865 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
101, 9mp3an2 1404 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋)
112, 4nvscl 26865 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
121, 11mp3an2 1404 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐷𝑋) → (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)
1310, 12anim12dan 878 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
14133adant2 1073 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋))
152, 3nvadd4 26864 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1( ·𝑠OLD𝑈)𝐶) ∈ 𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
1614, 15syld3an3 1363 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺((-1( ·𝑠OLD𝑈)𝐶)𝐺(-1( ·𝑠OLD𝑈)𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
178, 16eqtrd 2644 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
18 simp1 1054 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → 𝑈 ∈ NrmCVec)
192, 3nvgcl 26859 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
20193expb 1258 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
21203adant3 1074 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
222, 3nvgcl 26859 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
23223expb 1258 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
24233adant2 1073 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝐺𝐷) ∈ 𝑋)
25 nvpncan2.3 . . . 4 𝑀 = ( −𝑣𝑈)
262, 3, 4, 25nvmval 26881 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
2718, 21, 24, 26syl3anc 1318 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝐺𝐵)𝐺(-1( ·𝑠OLD𝑈)(𝐶𝐺𝐷))))
282, 3, 4, 25nvmval 26881 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
29283adant3r 1315 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
30293adant2r 1313 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑀𝐶) = (𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶)))
312, 3, 4, 25nvmval 26881 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
32313adant3l 1314 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
33323adant2l 1312 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → (𝐵𝑀𝐷) = (𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷)))
3430, 33oveq12d 6567 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)) = ((𝐴𝐺(-1( ·𝑠OLD𝑈)𝐶))𝐺(𝐵𝐺(-1( ·𝑠OLD𝑈)𝐷))))
3517, 27, 343eqtr4d 2654 1 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  -cneg 10146  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  𝑣 cnsb 26828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839
This theorem is referenced by:  vacn  26933  minvecolem2  27115
  Copyright terms: Public domain W3C validator