Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmeq0 Structured version   Visualization version   GIF version

Theorem nvmeq0 26897
 Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmeq0.1 𝑋 = (BaseSet‘𝑈)
nvmeq0.3 𝑀 = ( −𝑣𝑈)
nvmeq0.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvmeq0 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑀𝐵) = 𝑍𝐴 = 𝐵))

Proof of Theorem nvmeq0
StepHypRef Expression
1 nvmeq0.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvmeq0.3 . . . . . . 7 𝑀 = ( −𝑣𝑈)
31, 2nvmcl 26885 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) ∈ 𝑋)
433expb 1258 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑀𝐵) ∈ 𝑋)
5 nvmeq0.5 . . . . . . 7 𝑍 = (0vec𝑈)
61, 5nvzcl 26873 . . . . . 6 (𝑈 ∈ NrmCVec → 𝑍𝑋)
76adantr 480 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝑍𝑋)
8 simprr 792 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
94, 7, 83jca 1235 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝑀𝐵) ∈ 𝑋𝑍𝑋𝐵𝑋))
10 eqid 2610 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
111, 10nvrcan 26863 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((𝐴𝑀𝐵) ∈ 𝑋𝑍𝑋𝐵𝑋)) → (((𝐴𝑀𝐵)( +𝑣𝑈)𝐵) = (𝑍( +𝑣𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍))
129, 11syldan 486 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (((𝐴𝑀𝐵)( +𝑣𝑈)𝐵) = (𝑍( +𝑣𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍))
13123impb 1252 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝐴𝑀𝐵)( +𝑣𝑈)𝐵) = (𝑍( +𝑣𝑈)𝐵) ↔ (𝐴𝑀𝐵) = 𝑍))
141, 10, 2nvnpcan 26895 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑀𝐵)( +𝑣𝑈)𝐵) = 𝐴)
151, 10, 5nv0lid 26875 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑍( +𝑣𝑈)𝐵) = 𝐵)
16153adant2 1073 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑍( +𝑣𝑈)𝐵) = 𝐵)
1714, 16eqeq12d 2625 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝐴𝑀𝐵)( +𝑣𝑈)𝐵) = (𝑍( +𝑣𝑈)𝐵) ↔ 𝐴 = 𝐵))
1813, 17bitr3d 269 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑀𝐵) = 𝑍𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825  0veccn0v 26827   −𝑣 cnsb 26828 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839 This theorem is referenced by:  nvmid  26898  ip2eqi  27096
 Copyright terms: Public domain W3C validator