Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsiso Structured version   Visualization version   GIF version

Theorem ntrclsiso 37385
 Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that either is isotonic hold equally. (Contributed by RP, 3-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsiso (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠,𝑡   𝑗,𝐼,𝑘,𝑠,𝑡   𝜑,𝑖,𝑗,𝑘,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsiso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3589 . . . . 5 (𝑠 = 𝑏 → (𝑠𝑡𝑏𝑡))
2 fveq2 6103 . . . . . 6 (𝑠 = 𝑏 → (𝐼𝑠) = (𝐼𝑏))
32sseq1d 3595 . . . . 5 (𝑠 = 𝑏 → ((𝐼𝑠) ⊆ (𝐼𝑡) ↔ (𝐼𝑏) ⊆ (𝐼𝑡)))
41, 3imbi12d 333 . . . 4 (𝑠 = 𝑏 → ((𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ (𝑏𝑡 → (𝐼𝑏) ⊆ (𝐼𝑡))))
5 sseq2 3590 . . . . 5 (𝑡 = 𝑎 → (𝑏𝑡𝑏𝑎))
6 fveq2 6103 . . . . . 6 (𝑡 = 𝑎 → (𝐼𝑡) = (𝐼𝑎))
76sseq2d 3596 . . . . 5 (𝑡 = 𝑎 → ((𝐼𝑏) ⊆ (𝐼𝑡) ↔ (𝐼𝑏) ⊆ (𝐼𝑎)))
85, 7imbi12d 333 . . . 4 (𝑡 = 𝑎 → ((𝑏𝑡 → (𝐼𝑏) ⊆ (𝐼𝑡)) ↔ (𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎))))
94, 8cbvral2v 3155 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑏 ∈ 𝒫 𝐵𝑎 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)))
10 ralcom 3079 . . 3 (∀𝑏 ∈ 𝒫 𝐵𝑎 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)))
119, 10bitri 263 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)))
12 simpl 472 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝜑)
13 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
14 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1513, 14ntrclsbex 37352 . . . . 5 (𝜑𝐵 ∈ V)
1612, 15syl 17 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
17 difssd 3700 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ⊆ 𝐵)
1816, 17sselpwd 4734 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
19 elpwi 4117 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
20 simpl 472 . . . . . 6 ((𝐵 ∈ V ∧ 𝑎𝐵) → 𝐵 ∈ V)
21 difssd 3700 . . . . . 6 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2220, 21sselpwd 4734 . . . . 5 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
23 simpr 476 . . . . . . . 8 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → 𝑠 = (𝐵𝑎))
2423difeq2d 3690 . . . . . . 7 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2524eqeq2d 2620 . . . . . 6 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
26 eqcom 2617 . . . . . 6 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2725, 26syl6bb 275 . . . . 5 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
28 dfss4 3820 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928biimpi 205 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3029adantl 481 . . . . 5 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3122, 27, 30rspcedvd 3289 . . . 4 ((𝐵 ∈ V ∧ 𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3215, 19, 31syl2an 493 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
33 simpl1 1057 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑)
3433, 15syl 17 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
35 difssd 3700 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ⊆ 𝐵)
3634, 35sselpwd 4734 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
37 elpwi 4117 . . . . . 6 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
38 simpl 472 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑏𝐵) → 𝐵 ∈ V)
39 difssd 3700 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵𝑏) ⊆ 𝐵)
4038, 39sselpwd 4734 . . . . . . 7 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
41 simpr 476 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → 𝑡 = (𝐵𝑏))
4241difeq2d 3690 . . . . . . . . 9 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4342eqeq2d 2620 . . . . . . . 8 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
44 eqcom 2617 . . . . . . . 8 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4543, 44syl6bb 275 . . . . . . 7 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
46 dfss4 3820 . . . . . . . . 9 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4746biimpi 205 . . . . . . . 8 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4847adantl 481 . . . . . . 7 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4940, 45, 48rspcedvd 3289 . . . . . 6 ((𝐵 ∈ V ∧ 𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
5015, 37, 49syl2an 493 . . . . 5 ((𝜑𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
51503ad2antl1 1216 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
52 simp12 1085 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
5352elpwid 4118 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠𝐵)
54 simp2 1055 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
5554elpwid 4118 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡𝐵)
56 sscon34b 37337 . . . . . . . 8 ((𝑠𝐵𝑡𝐵) → (𝑠𝑡 ↔ (𝐵𝑡) ⊆ (𝐵𝑠)))
5753, 55, 56syl2anc 691 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝑠𝑡 ↔ (𝐵𝑡) ⊆ (𝐵𝑠)))
5857bicomd 212 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐵𝑡) ⊆ (𝐵𝑠) ↔ 𝑠𝑡))
59 simp11 1084 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
60 ntrcls.o . . . . . . . . . . . 12 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
6160, 13, 14ntrclsiex 37371 . . . . . . . . . . 11 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
6259, 61syl 17 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
63 elmapi 7765 . . . . . . . . . 10 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
6462, 63syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
6559, 15syl 17 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐵 ∈ V)
66 difssd 3700 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐵𝑡) ⊆ 𝐵)
6765, 66sselpwd 4734 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐵𝑡) ∈ 𝒫 𝐵)
6864, 67ffvelrnd 6268 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼‘(𝐵𝑡)) ∈ 𝒫 𝐵)
6968elpwid 4118 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼‘(𝐵𝑡)) ⊆ 𝐵)
70 difssd 3700 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐵𝑠) ⊆ 𝐵)
7165, 70sselpwd 4734 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐵𝑠) ∈ 𝒫 𝐵)
7264, 71ffvelrnd 6268 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
7372elpwid 4118 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
74 sscon34b 37337 . . . . . . 7 (((𝐼‘(𝐵𝑡)) ⊆ 𝐵 ∧ (𝐼‘(𝐵𝑠)) ⊆ 𝐵) → ((𝐼‘(𝐵𝑡)) ⊆ (𝐼‘(𝐵𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
7569, 73, 74syl2anc 691 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼‘(𝐵𝑡)) ⊆ (𝐼‘(𝐵𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
7658, 75imbi12d 333 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐵𝑡) ⊆ (𝐵𝑠) → (𝐼‘(𝐵𝑡)) ⊆ (𝐼‘(𝐵𝑠))) ↔ (𝑠𝑡 → (𝐵 ∖ (𝐼‘(𝐵𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑡))))))
77 simp3 1056 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑏 = (𝐵𝑡))
78 simp13 1086 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑎 = (𝐵𝑠))
7977, 78sseq12d 3597 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝑏𝑎 ↔ (𝐵𝑡) ⊆ (𝐵𝑠)))
8077fveq2d 6107 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
8178fveq2d 6107 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
8280, 81sseq12d 3597 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐼𝑏) ⊆ (𝐼𝑎) ↔ (𝐼‘(𝐵𝑡)) ⊆ (𝐼‘(𝐵𝑠))))
8379, 82imbi12d 333 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)) ↔ ((𝐵𝑡) ⊆ (𝐵𝑠) → (𝐼‘(𝐵𝑡)) ⊆ (𝐼‘(𝐵𝑠)))))
8460, 13, 14ntrclsfv1 37373 . . . . . . . . . 10 (𝜑 → (𝐷𝐼) = 𝐾)
8559, 84syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐷𝐼) = 𝐾)
8685fveq1d 6105 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
87 eqid 2610 . . . . . . . . 9 (𝐷𝐼) = (𝐷𝐼)
88 eqid 2610 . . . . . . . . 9 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
8960, 13, 65, 62, 87, 52, 88dssmapfv3d 37333 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
9086, 89eqtr3d 2646 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐾𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
9159, 14syl 17 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐼𝐷𝐾)
9260, 13, 91ntrclsfv1 37373 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐷𝐼) = 𝐾)
9392fveq1d 6105 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
94 eqid 2610 . . . . . . . . 9 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
9560, 13, 65, 62, 87, 54, 94dssmapfv3d 37333 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
9693, 95eqtr3d 2646 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐾𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
9790, 96sseq12d 3597 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐾𝑠) ⊆ (𝐾𝑡) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
9897imbi2d 329 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡)) ↔ (𝑠𝑡 → (𝐵 ∖ (𝐼‘(𝐵𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑡))))))
9976, 83, 983bitr4d 299 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)) ↔ (𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
10036, 51, 99ralxfrd2 4810 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
10118, 32, 100ralxfrd2 4810 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵(𝑏𝑎 → (𝐼𝑏) ⊆ (𝐼𝑎)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
10211, 101syl5bb 271 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator