Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfv1 Structured version   Visualization version   GIF version

Theorem ntrclsfv1 37373
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsfv1 (𝜑 → (𝐷𝐼) = 𝐾)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfv1
StepHypRef Expression
1 ntrcls.r . 2 (𝜑𝐼𝐷𝐾)
2 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
3 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
42, 3, 1ntrclsf1o 37369 . . . . . 6 (𝜑𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
5 f1ofn 6051 . . . . . 6 (𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
64, 5syl 17 . . . . 5 (𝜑𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
72, 3, 1ntrclsiex 37371 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
86, 7jca 553 . . . 4 (𝜑 → (𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)))
9 fnfun 5902 . . . . . 6 (𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) → Fun 𝐷)
109adantr 480 . . . . 5 ((𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → Fun 𝐷)
11 fndm 5904 . . . . . . 7 (𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) → dom 𝐷 = (𝒫 𝐵𝑚 𝒫 𝐵))
1211eleq2d 2673 . . . . . 6 (𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) → (𝐼 ∈ dom 𝐷𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)))
1312biimpar 501 . . . . 5 ((𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → 𝐼 ∈ dom 𝐷)
1410, 13jca 553 . . . 4 ((𝐷 Fn (𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (Fun 𝐷𝐼 ∈ dom 𝐷))
158, 14syl 17 . . 3 (𝜑 → (Fun 𝐷𝐼 ∈ dom 𝐷))
16 funbrfvb 6148 . . 3 ((Fun 𝐷𝐼 ∈ dom 𝐷) → ((𝐷𝐼) = 𝐾𝐼𝐷𝐾))
1715, 16syl 17 . 2 (𝜑 → ((𝐷𝐼) = 𝐾𝐼𝐷𝐾))
181, 17mpbird 246 1 (𝜑 → (𝐷𝐼) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  ntrclsfv2  37374  ntrclscls00  37384  ntrclsiso  37385  ntrclsk2  37386  ntrclskb  37387  ntrclsk3  37388  ntrclsk13  37389
  Copyright terms: Public domain W3C validator