Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfval Structured version   Visualization version   GIF version

Theorem msrfval 30688
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrfval 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Distinct variable groups:   ,𝑎,𝑠,𝑧,𝑃   𝑇,𝑎,,𝑠   𝑧,𝑉
Allowed substitution hints:   𝑅(𝑧,,𝑠,𝑎)   𝑇(𝑧)   𝑉(,𝑠,𝑎)

Proof of Theorem msrfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 msrfval.r . 2 𝑅 = (mStRed‘𝑇)
2 fveq2 6103 . . . . . 6 (𝑡 = 𝑇 → (mPreSt‘𝑡) = (mPreSt‘𝑇))
3 msrfval.p . . . . . 6 𝑃 = (mPreSt‘𝑇)
42, 3syl6eqr 2662 . . . . 5 (𝑡 = 𝑇 → (mPreSt‘𝑡) = 𝑃)
5 fveq2 6103 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
6 msrfval.v . . . . . . . . . . . . 13 𝑉 = (mVars‘𝑇)
75, 6syl6eqr 2662 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
87imaeq1d 5384 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
98unieqd 4382 . . . . . . . . . 10 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
109csbeq1d 3506 . . . . . . . . 9 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧))
1110ineq2d 3776 . . . . . . . 8 (𝑡 = 𝑇 → ((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)))
1211oteq1d 4352 . . . . . . 7 (𝑡 = 𝑇 → ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1312csbeq2dv 3944 . . . . . 6 (𝑡 = 𝑇(2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1413csbeq2dv 3944 . . . . 5 (𝑡 = 𝑇(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
154, 14mpteq12dv 4663 . . . 4 (𝑡 = 𝑇 → (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
16 df-msr 30645 . . . 4 mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
17 fvex 6113 . . . . . 6 (mPreSt‘𝑇) ∈ V
183, 17eqeltri 2684 . . . . 5 𝑃 ∈ V
1918mptex 6390 . . . 4 (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) ∈ V
2015, 16, 19fvmpt 6191 . . 3 (𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
21 mpt0 5934 . . . . 5 (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = ∅
2221eqcomi 2619 . . . 4 ∅ = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
23 fvprc 6097 . . . 4 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
24 fvprc 6097 . . . . . 6 𝑇 ∈ V → (mPreSt‘𝑇) = ∅)
253, 24syl5eq 2656 . . . . 5 𝑇 ∈ V → 𝑃 = ∅)
2625mpteq1d 4666 . . . 4 𝑇 ∈ V → (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2722, 23, 263eqtr4a 2670 . . 3 𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2820, 27pm2.61i 175 . 2 (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
291, 28eqtri 2632 1 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  cun 3538  cin 3539  c0 3874  {csn 4125  cotp 4133   cuni 4372  cmpt 4643   × cxp 5036  cima 5041  cfv 5804  1st c1st 7057  2nd c2nd 7058  mVarscmvrs 30620  mPreStcmpst 30624  mStRedcmsr 30625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-ot 4134  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-msr 30645
This theorem is referenced by:  msrval  30689  msrf  30693
  Copyright terms: Public domain W3C validator