MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval Structured version   Visualization version   GIF version

Theorem marepvval 20192
Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvval ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem marepvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . 5 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . . 5 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
51, 2, 3, 4marepvval0 20191 . . . 4 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
653adant3 1074 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
76fveq1d 6105 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾))
8 simp3 1056 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝐾𝑁)
91, 2matrcl 20037 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 474 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1110, 10jca 553 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
12113ad2ant1 1075 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
13 mpt2exga 7135 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
1412, 13syl 17 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
15 eqeq2 2621 . . . . . 6 (𝑘 = 𝐾 → (𝑗 = 𝑘𝑗 = 𝐾))
1615ifbid 4058 . . . . 5 (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)))
1716mpt2eq3dv 6619 . . . 4 (𝑘 = 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
18 eqid 2610 . . . 4 (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
1917, 18fvmptg 6189 . . 3 ((𝐾𝑁 ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
208, 14, 19syl2anc 691 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
217, 20eqtrd 2644 1 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Fincfn 7841  Basecbs 15695   Mat cmat 20032   matRepV cmatrepV 20182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-slot 15699  df-base 15700  df-mat 20033  df-marepv 20184
This theorem is referenced by:  marepveval  20193  marepvcl  20194  1marepvmarrepid  20200  cramerimplem2  20309
  Copyright terms: Public domain W3C validator