Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem4 Structured version   Visualization version   GIF version

Theorem ltexprlem4 9740
 Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem4 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prnmax 9696 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤)
2 df-rex 2902 . . . . . . . . 9 (∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤 ↔ ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
31, 2sylib 207 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
4 ltrelnq 9627 . . . . . . . . . . . . . . . . . . . 20 <Q ⊆ (Q × Q)
54brel 5090 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) <Q 𝑤 → ((𝑦 +Q 𝑥) ∈ Q𝑤Q))
65simpld 474 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦 +Q 𝑥) ∈ Q)
7 addnqf 9649 . . . . . . . . . . . . . . . . . . . 20 +Q :(Q × Q)⟶Q
87fdmi 5965 . . . . . . . . . . . . . . . . . . 19 dom +Q = (Q × Q)
9 0nnq 9625 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ ∈ Q
108, 9ndmovrcl 6718 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
116, 10syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦Q𝑥Q))
12 ltaddnq 9675 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑥Q) → 𝑦 <Q (𝑦 +Q 𝑥))
13 ltsonq 9670 . . . . . . . . . . . . . . . . . . 19 <Q Or Q
1413, 4sotri 5442 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q (𝑦 +Q 𝑥) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1512, 14sylan 487 . . . . . . . . . . . . . . . . 17 (((𝑦Q𝑥Q) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1611, 15mpancom 700 . . . . . . . . . . . . . . . 16 ((𝑦 +Q 𝑥) <Q 𝑤𝑦 <Q 𝑤)
174brel 5090 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → (𝑦Q𝑤Q))
1817simprd 478 . . . . . . . . . . . . . . . . 17 (𝑦 <Q 𝑤𝑤Q)
19 ltexnq 9676 . . . . . . . . . . . . . . . . . 18 (𝑤Q → (𝑦 <Q 𝑤 ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2019biimpd 218 . . . . . . . . . . . . . . . . 17 (𝑤Q → (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2118, 20mpcom 37 . . . . . . . . . . . . . . . 16 (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2216, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
23 eqcom 2617 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑦 +Q 𝑧) ↔ (𝑦 +Q 𝑧) = 𝑤)
2423exbii 1764 . . . . . . . . . . . . . . 15 (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2522, 24sylibr 223 . . . . . . . . . . . . . 14 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧 𝑤 = (𝑦 +Q 𝑧))
2625ancri 573 . . . . . . . . . . . . 13 ((𝑦 +Q 𝑥) <Q 𝑤 → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤))
2726anim2i 591 . . . . . . . . . . . 12 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
28 an12 834 . . . . . . . . . . . 12 ((∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
2927, 28sylibr 223 . . . . . . . . . . 11 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
30 19.41v 1901 . . . . . . . . . . 11 (∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3129, 30sylibr 223 . . . . . . . . . 10 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3231eximi 1752 . . . . . . . . 9 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
33 excom 2029 . . . . . . . . 9 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3432, 33sylibr 223 . . . . . . . 8 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
35 ovex 6577 . . . . . . . . . . 11 (𝑦 +Q 𝑧) ∈ V
36 eleq1 2676 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → (𝑤𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
37 breq2 4587 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → ((𝑦 +Q 𝑥) <Q 𝑤 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
3836, 37anbi12d 743 . . . . . . . . . . 11 (𝑤 = (𝑦 +Q 𝑧) → ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧))))
3935, 38ceqsexv 3215 . . . . . . . . . 10 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
40 ltanq 9672 . . . . . . . . . . . 12 (𝑦Q → (𝑥 <Q 𝑧 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
418, 4, 9, 40ndmovordi 6723 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧) → 𝑥 <Q 𝑧)
4241anim2i 591 . . . . . . . . . 10 (((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4339, 42sylbi 206 . . . . . . . . 9 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4443eximi 1752 . . . . . . . 8 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
453, 34, 443syl 18 . . . . . . 7 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4645anim2i 591 . . . . . 6 ((¬ 𝑦𝐴 ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4746an12s 839 . . . . 5 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
48 19.42v 1905 . . . . 5 (∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4947, 48sylibr 223 . . . 4 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
5049ex 449 . . 3 (𝐵P → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
5150eximdv 1833 . 2 (𝐵P → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
52 ltexprlem.1 . . 3 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
5352abeq2i 2722 . 2 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
54 vex 3176 . . . . . . 7 𝑧 ∈ V
55 oveq2 6557 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
5655eleq1d 2672 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
5756anbi2d 736 . . . . . . . 8 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5857exbidv 1837 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5954, 58, 52elab2 3323 . . . . . 6 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
6059anbi1i 727 . . . . 5 ((𝑧𝐶𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
61 19.41v 1901 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
62 anass 679 . . . . . 6 (((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (¬ 𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6362exbii 1764 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6460, 61, 633bitr2i 287 . . . 4 ((𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6564exbii 1764 . . 3 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
66 excom 2029 . . 3 (∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6765, 66bitr4i 266 . 2 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6851, 53, 673imtr4g 284 1 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∃wrex 2897   class class class wbr 4583   × cxp 5036  (class class class)co 6549  Qcnq 9553   +Q cplq 9556
 Copyright terms: Public domain W3C validator