MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem4 Structured version   Unicode version

Theorem ltexprlem4 9434
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem4  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, z
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 prnmax 9390 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. w  e.  B  ( y  +Q  x
)  <Q  w )
2 df-rex 2813 . . . . . . . . 9  |-  ( E. w  e.  B  ( y  +Q  x ) 
<Q  w  <->  E. w ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )
31, 2sylib 196 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. w ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )
4 ltrelnq 9321 . . . . . . . . . . . . . . . . . . . 20  |-  <Q  C_  ( Q.  X.  Q. )
54brel 5057 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( ( y  +Q  x )  e.  Q.  /\  w  e.  Q. ) )
65simpld 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( y  +Q  x )  e. 
Q. )
7 addnqf 9343 . . . . . . . . . . . . . . . . . . . 20  |-  +Q  :
( Q.  X.  Q. )
--> Q.
87fdmi 5742 . . . . . . . . . . . . . . . . . . 19  |-  dom  +Q  =  ( Q.  X.  Q. )
9 0nnq 9319 . . . . . . . . . . . . . . . . . . 19  |-  -.  (/)  e.  Q.
108, 9ndmovrcl 6460 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +Q  x )  e.  Q.  ->  (
y  e.  Q.  /\  x  e.  Q. )
)
116, 10syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
12 ltaddnq 9369 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  Q.  /\  x  e.  Q. )  ->  y  <Q  ( y  +Q  x ) )
13 ltsonq 9364 . . . . . . . . . . . . . . . . . . 19  |-  <Q  Or  Q.
1413, 4sotri 5404 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  <Q  ( y  +Q  x )  /\  (
y  +Q  x ) 
<Q  w )  ->  y  <Q  w )
1512, 14sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  Q.  /\  x  e.  Q. )  /\  ( y  +Q  x
)  <Q  w )  -> 
y  <Q  w )
1611, 15mpancom 669 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  x ) 
<Q  w  ->  y  <Q  w )
174brel 5057 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  ( y  e.  Q.  /\  w  e.  Q. ) )
1817simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( y 
<Q  w  ->  w  e. 
Q. )
19 ltexnq 9370 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  Q.  ->  (
y  <Q  w  <->  E. z
( y  +Q  z
)  =  w ) )
2019biimpd 207 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  Q.  ->  (
y  <Q  w  ->  E. z
( y  +Q  z
)  =  w ) )
2118, 20mpcom 36 . . . . . . . . . . . . . . . 16  |-  ( y 
<Q  w  ->  E. z
( y  +Q  z
)  =  w )
2216, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( y  +Q  x ) 
<Q  w  ->  E. z
( y  +Q  z
)  =  w )
23 eqcom 2466 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( y  +Q  z )  <->  ( y  +Q  z )  =  w )
2423exbii 1668 . . . . . . . . . . . . . . 15  |-  ( E. z  w  =  ( y  +Q  z )  <->  E. z ( y  +Q  z )  =  w )
2522, 24sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( y  +Q  x ) 
<Q  w  ->  E. z  w  =  ( y  +Q  z ) )
2625ancri 552 . . . . . . . . . . . . 13  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( E. z  w  =  ( y  +Q  z )  /\  ( y  +Q  x )  <Q  w
) )
2726anim2i 569 . . . . . . . . . . . 12  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  -> 
( w  e.  B  /\  ( E. z  w  =  ( y  +Q  z )  /\  (
y  +Q  x ) 
<Q  w ) ) )
28 an12 797 . . . . . . . . . . . 12  |-  ( ( E. z  w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( w  e.  B  /\  ( E. z  w  =  ( y  +Q  z
)  /\  ( y  +Q  x )  <Q  w
) ) )
2927, 28sylibr 212 . . . . . . . . . . 11  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  -> 
( E. z  w  =  ( y  +Q  z )  /\  (
w  e.  B  /\  ( y  +Q  x
)  <Q  w ) ) )
30 19.41v 1772 . . . . . . . . . . 11  |-  ( E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( E. z  w  =  (
y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x )  <Q  w ) ) )
3129, 30sylibr 212 . . . . . . . . . 10  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  ->  E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
3231eximi 1657 . . . . . . . . 9  |-  ( E. w ( w  e.  B  /\  ( y  +Q  x )  <Q  w )  ->  E. w E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
33 excom 1850 . . . . . . . . 9  |-  ( E. z E. w ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) )  <->  E. w E. z ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) ) )
3432, 33sylibr 212 . . . . . . . 8  |-  ( E. w ( w  e.  B  /\  ( y  +Q  x )  <Q  w )  ->  E. z E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
35 ovex 6324 . . . . . . . . . . 11  |-  ( y  +Q  z )  e. 
_V
36 eleq1 2529 . . . . . . . . . . . 12  |-  ( w  =  ( y  +Q  z )  ->  (
w  e.  B  <->  ( y  +Q  z )  e.  B
) )
37 breq2 4460 . . . . . . . . . . . 12  |-  ( w  =  ( y  +Q  z )  ->  (
( y  +Q  x
)  <Q  w  <->  ( y  +Q  x )  <Q  (
y  +Q  z ) ) )
3836, 37anbi12d 710 . . . . . . . . . . 11  |-  ( w  =  ( y  +Q  z )  ->  (
( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  <->  ( (
y  +Q  z )  e.  B  /\  (
y  +Q  x ) 
<Q  ( y  +Q  z
) ) ) )
3935, 38ceqsexv 3146 . . . . . . . . . 10  |-  ( E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( (
y  +Q  z )  e.  B  /\  (
y  +Q  x ) 
<Q  ( y  +Q  z
) ) )
40 ltanq 9366 . . . . . . . . . . . 12  |-  ( y  e.  Q.  ->  (
x  <Q  z  <->  ( y  +Q  x )  <Q  (
y  +Q  z ) ) )
418, 4, 9, 40ndmovordi 6465 . . . . . . . . . . 11  |-  ( ( y  +Q  x ) 
<Q  ( y  +Q  z
)  ->  x  <Q  z )
4241anim2i 569 . . . . . . . . . 10  |-  ( ( ( y  +Q  z
)  e.  B  /\  ( y  +Q  x
)  <Q  ( y  +Q  z ) )  -> 
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4339, 42sylbi 195 . . . . . . . . 9  |-  ( E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  -> 
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4443eximi 1657 . . . . . . . 8  |-  ( E. z E. w ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) )  ->  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
453, 34, 443syl 20 . . . . . . 7  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4645anim2i 569 . . . . . 6  |-  ( ( -.  y  e.  A  /\  ( B  e.  P.  /\  ( y  +Q  x
)  e.  B ) )  ->  ( -.  y  e.  A  /\  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
4746an12s 801 . . . . 5  |-  ( ( B  e.  P.  /\  ( -.  y  e.  A  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  /\  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
48 19.42v 1776 . . . . 5  |-  ( E. z ( -.  y  e.  A  /\  (
( y  +Q  z
)  e.  B  /\  x  <Q  z ) )  <-> 
( -.  y  e.  A  /\  E. z
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
4947, 48sylibr 212 . . . 4  |-  ( ( B  e.  P.  /\  ( -.  y  e.  A  /\  ( y  +Q  x )  e.  B
) )  ->  E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
5049ex 434 . . 3  |-  ( B  e.  P.  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  ->  E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) ) )
5150eximdv 1711 . 2  |-  ( B  e.  P.  ->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B )  ->  E. y E. z ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) ) )
52 ltexprlem.1 . . 3  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
5352abeq2i 2584 . 2  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
54 vex 3112 . . . . . . 7  |-  z  e. 
_V
55 oveq2 6304 . . . . . . . . . 10  |-  ( x  =  z  ->  (
y  +Q  x )  =  ( y  +Q  z ) )
5655eleq1d 2526 . . . . . . . . 9  |-  ( x  =  z  ->  (
( y  +Q  x
)  e.  B  <->  ( y  +Q  z )  e.  B
) )
5756anbi2d 703 . . . . . . . 8  |-  ( x  =  z  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  <->  ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B ) ) )
5857exbidv 1715 . . . . . . 7  |-  ( x  =  z  ->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B )  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B ) ) )
5954, 58, 52elab2 3249 . . . . . 6  |-  ( z  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B ) )
6059anbi1i 695 . . . . 5  |-  ( ( z  e.  C  /\  x  <Q  z )  <->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  z )  e.  B )  /\  x  <Q  z ) )
61 19.41v 1772 . . . . 5  |-  ( E. y ( ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B )  /\  x  <Q  z
)  <->  ( E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B )  /\  x  <Q  z ) )
62 anass 649 . . . . . 6  |-  ( ( ( -.  y  e.  A  /\  ( y  +Q  z )  e.  B )  /\  x  <Q  z )  <->  ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6362exbii 1668 . . . . 5  |-  ( E. y ( ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B )  /\  x  <Q  z
)  <->  E. y ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6460, 61, 633bitr2i 273 . . . 4  |-  ( ( z  e.  C  /\  x  <Q  z )  <->  E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6564exbii 1668 . . 3  |-  ( E. z ( z  e.  C  /\  x  <Q  z )  <->  E. z E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
66 excom 1850 . . 3  |-  ( E. y E. z ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )  <->  E. z E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6765, 66bitr4i 252 . 2  |-  ( E. z ( z  e.  C  /\  x  <Q  z )  <->  E. y E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6851, 53, 673imtr4g 270 1  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442   E.wrex 2808   class class class wbr 4456    X. cxp 5006  (class class class)co 6296   Q.cnq 9247    +Q cplq 9250    <Q cltq 9253   P.cnp 9254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-omul 7153  df-er 7329  df-ni 9267  df-pli 9268  df-mi 9269  df-lti 9270  df-plpq 9303  df-mpq 9304  df-ltpq 9305  df-enq 9306  df-nq 9307  df-erq 9308  df-plq 9309  df-mq 9310  df-1nq 9311  df-ltnq 9313  df-np 9376
This theorem is referenced by:  ltexprlem5  9435
  Copyright terms: Public domain W3C validator