Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   GIF version

Theorem lcoc0 42005
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
lcoc0.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅𝑚 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem lcoc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6 𝑆 = (Scalar‘𝑀)
2 lcoc0.r . . . . . 6 𝑅 = (Base‘𝑆)
3 lincvalsc0.0 . . . . . 6 0 = (0g𝑆)
41, 2, 3lmod0cl 18712 . . . . 5 (𝑀 ∈ LMod → 0𝑅)
54ad2antrr 758 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0𝑅)
6 lincvalsc0.f . . . 4 𝐹 = (𝑥𝑉0 )
75, 6fmptd 6292 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉𝑅)
8 fvex 6113 . . . . . 6 (Base‘𝑆) ∈ V
92, 8eqeltri 2684 . . . . 5 𝑅 ∈ V
109a1i 11 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ V)
11 elmapg 7757 . . . 4 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅𝑚 𝑉) ↔ 𝐹:𝑉𝑅))
1210, 11sylan 487 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅𝑚 𝑉) ↔ 𝐹:𝑉𝑅))
137, 12mpbird 246 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅𝑚 𝑉))
14 eqidd 2611 . . . . . . 7 (𝑥 = 𝑣0 = 0 )
1514cbvmptv 4678 . . . . . 6 (𝑥𝑉0 ) = (𝑣𝑉0 )
166, 15eqtri 2632 . . . . 5 𝐹 = (𝑣𝑉0 )
17 simpr 476 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵)
18 fvex 6113 . . . . . . 7 (0g𝑆) ∈ V
193, 18eqeltri 2684 . . . . . 6 0 ∈ V
2019a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V)
2119a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 0 ∈ V)
2216, 17, 20, 21mptsuppd 7205 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣𝑉00 })
23 neirr 2791 . . . . . . . 8 ¬ 00
2423a1i 11 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 00 )
2524ralrimivw 2950 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣𝑉 ¬ 00 )
26 rabeq0 3911 . . . . . 6 ({𝑣𝑉00 } = ∅ ↔ ∀𝑣𝑉 ¬ 00 )
2725, 26sylibr 223 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } = ∅)
28 0fin 8073 . . . . . 6 ∅ ∈ Fin
2928a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin)
3027, 29eqeltrd 2688 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } ∈ Fin)
3122, 30eqeltrd 2688 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin)
326funmpt2 5841 . . . . 5 Fun 𝐹
3332a1i 11 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹)
34 funisfsupp 8163 . . . 4 ((Fun 𝐹𝐹 ∈ (𝑅𝑚 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3533, 13, 20, 34syl3anc 1318 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3631, 35mpbird 246 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 )
37 lincvalsc0.b . . 3 𝐵 = (Base‘𝑀)
38 lincvalsc0.z . . 3 𝑍 = (0g𝑀)
3937, 1, 3, 38, 6lincvalsc0 42004 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
4013, 36, 393jca 1235 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅𝑚 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  LModclmod 18686   linC clinc 41987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-en 7842  df-fin 7845  df-fsupp 8159  df-seq 12664  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ring 18372  df-lmod 18688  df-linc 41989
This theorem is referenced by:  lcoel0  42011
  Copyright terms: Public domain W3C validator