MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenval Structured version   Visualization version   GIF version

Theorem kgenval 21148
Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenval (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋,𝑥

Proof of Theorem kgenval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-kgen 21147 . . 3 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
21a1i 11 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))}))
3 unieq 4380 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
4 toponuni 20542 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54eqcomd 2616 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 = 𝑋)
63, 5sylan9eqr 2666 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝑋)
76pweqd 4113 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝒫 𝑗 = 𝒫 𝑋)
8 oveq1 6556 . . . . . . 7 (𝑗 = 𝐽 → (𝑗t 𝑘) = (𝐽t 𝑘))
98eleq1d 2672 . . . . . 6 (𝑗 = 𝐽 → ((𝑗t 𝑘) ∈ Comp ↔ (𝐽t 𝑘) ∈ Comp))
108eleq2d 2673 . . . . . 6 (𝑗 = 𝐽 → ((𝑥𝑘) ∈ (𝑗t 𝑘) ↔ (𝑥𝑘) ∈ (𝐽t 𝑘)))
119, 10imbi12d 333 . . . . 5 (𝑗 = 𝐽 → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
1211adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
137, 12raleqbidv 3129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
147, 13rabeqbidv 3168 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))} = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
15 topontop 20541 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
16 toponmax 20543 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
17 pwexg 4776 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
18 rabexg 4739 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
1916, 17, 183syl 18 . 2 (𝐽 ∈ (TopOn‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ∈ V)
202, 14, 15, 19fvmptd 6197 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  𝒫 cpw 4108   cuni 4372  cmpt 4643  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  TopOnctopon 20518  Compccmp 20999  𝑘Genckgen 21146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-top 20521  df-topon 20523  df-kgen 21147
This theorem is referenced by:  elkgen  21149  kgentopon  21151
  Copyright terms: Public domain W3C validator