MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenval Structured version   Unicode version

Theorem kgenval 19902
Description: Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenval  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  =  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } )
Distinct variable groups:    x, k, J    k, X, x

Proof of Theorem kgenval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-kgen 19901 . . 3  |- 𝑘Gen  =  (
j  e.  Top  |->  { x  e.  ~P U. j  |  A. k  e.  ~P  U. j ( ( jt  k )  e. 
Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } )
21a1i 11 . 2  |-  ( J  e.  (TopOn `  X
)  -> 𝑘Gen  =  ( j  e.  Top  |->  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } ) )
3 unieq 4259 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
4 toponuni 19295 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
54eqcomd 2475 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  U. J  =  X )
63, 5sylan9eqr 2530 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  X )
76pweqd 4021 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ~P U. j  =  ~P X
)
8 oveq1 6302 . . . . . . 7  |-  ( j  =  J  ->  (
jt  k )  =  ( Jt  k ) )
98eleq1d 2536 . . . . . 6  |-  ( j  =  J  ->  (
( jt  k )  e. 
Comp 
<->  ( Jt  k )  e. 
Comp ) )
108eleq2d 2537 . . . . . 6  |-  ( j  =  J  ->  (
( x  i^i  k
)  e.  ( jt  k )  <->  ( x  i^i  k )  e.  ( Jt  k ) ) )
119, 10imbi12d 320 . . . . 5  |-  ( j  =  J  ->  (
( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) )  <-> 
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) ) )
1211adantl 466 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) )  <-> 
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) ) )
137, 12raleqbidv 3077 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) )  <->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) ) )
147, 13rabeqbidv 3113 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  { x  e.  ~P U. j  | 
A. k  e.  ~P  U. j ( ( jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) }  =  {
x  e.  ~P X  |  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } )
15 topontop 19294 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
16 toponmax 19296 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
17 pwexg 4637 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
18 rabexg 4603 . . 3  |-  ( ~P X  e.  _V  ->  { x  e.  ~P X  |  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) }  e.  _V )
1916, 17, 183syl 20 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) }  e.  _V )
202, 14, 15, 19fvmptd 5962 1  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  =  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   _Vcvv 3118    i^i cin 3480   ~Pcpw 4016   U.cuni 4251    |-> cmpt 4511   ` cfv 5594  (class class class)co 6295   ↾t crest 14692   Topctop 19261  TopOnctopon 19262   Compccmp 19752  𝑘Genckgen 19900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-top 19266  df-topon 19269  df-kgen 19901
This theorem is referenced by:  elkgen  19903  kgentopon  19905
  Copyright terms: Public domain W3C validator