Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf33lem Structured version   Visualization version   GIF version

Theorem isf33lem 9071
 Description: Lemma for isfin3-3 9073. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf33lem FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Distinct variable group:   𝑔,𝑎,𝑥

Proof of Theorem isf33lem
Dummy variables 𝑏 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 9070 . . . 4 (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓)
2 fveq1 6102 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥))
3 fveq1 6102 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝑥) = (𝑏𝑥))
42, 3sseq12d 3597 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
54ralbidv 2969 . . . . . . . . 9 (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
6 rneq 5272 . . . . . . . . . . 11 (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏)
76inteqd 4415 . . . . . . . . . 10 (𝑎 = 𝑏 ran 𝑎 = ran 𝑏)
87, 6eleq12d 2682 . . . . . . . . 9 (𝑎 = 𝑏 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑏 ∈ ran 𝑏))
95, 8imbi12d 333 . . . . . . . 8 (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
109cbvralv 3147 . . . . . . 7 (∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏))
11 pweq 4111 . . . . . . . . 9 (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦)
1211oveq1d 6564 . . . . . . . 8 (𝑔 = 𝑦 → (𝒫 𝑔𝑚 ω) = (𝒫 𝑦𝑚 ω))
1312raleqdv 3121 . . . . . . 7 (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1410, 13syl5bb 271 . . . . . 6 (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1514cbvabv 2734 . . . . 5 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1615isf32lem12 9069 . . . 4 (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}))
171, 16mpd 15 . . 3 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
1810abbii 2726 . . . 4 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1918fin23lem41 9057 . . 3 (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII)
2017, 19impbii 198 . 2 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
2120eqriv 2607 1 FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896   ⊆ wss 3540  𝒫 cpw 4108  ∩ cint 4410   class class class wbr 4583  ran crn 5039  suc csuc 5642  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ↑𝑚 cmap 7744   ≼* cwdom 8345  FinIIIcfin3 8986 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-wdom 8347  df-card 8648  df-fin4 8992  df-fin3 8993 This theorem is referenced by:  isfin3-2  9072  isfin3-3  9073  fin23  9094
 Copyright terms: Public domain W3C validator