Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idaf | Structured version Visualization version GIF version |
Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idaf.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
idaf | ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otex 4860 | . . 3 ⊢ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉 ∈ V) |
3 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
4 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | eqid 2610 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
7 | 3, 4, 5, 6 | idafval 16530 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ((Id‘𝐶)‘𝑥)〉)) |
8 | idaf.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
9 | eqid 2610 | . . . 4 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
10 | 8, 9 | homarw 16519 | . . 3 ⊢ (𝑥(Homa‘𝐶)𝑥) ⊆ 𝐴 |
11 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ Cat) |
12 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
13 | 3, 4, 11, 12, 9 | idahom 16533 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ (𝑥(Homa‘𝐶)𝑥)) |
14 | 10, 13 | sseldi 3566 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝐴) |
15 | 2, 7, 14 | fmpt2d 6300 | 1 ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 〈cotp 4133 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Catccat 16148 Idccid 16149 Arrowcarw 16495 Homachoma 16496 Idacida 16526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-ot 4134 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-cat 16152 df-cid 16153 df-homa 16499 df-arw 16500 df-ida 16528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |