MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt2d Structured version   Visualization version   GIF version

Theorem fmpt2d 6300
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt2d.3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
Assertion
Ref Expression
fmpt2d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2610 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5933 . . . 4 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5895 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 246 . 2 (𝜑𝐹 Fn 𝐴)
9 fmpt2d.3 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
109ralrimiva 2949 . 2 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶)
11 ffnfv 6295 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶))
128, 10, 11sylanbrc 695 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by:  cantnff  8454  limsupgre  14060  idaf  16536  curfcl  16695  yonedainv  16744  mat2pmatf  20352  m2cpmf  20366  pm2mpf  20422  clsf  20662  kgenf  21154  rrxcph  22988  lgamf  24568  vmaf  24645  lgsdchr  24880  mirf  25355  omsf  29685  erdszelem6  30432  cdleme50f  34848  dochfN  35663  binomcxplemdvsum  37576
  Copyright terms: Public domain W3C validator