MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfcl Structured version   Visualization version   GIF version

Theorem curfcl 16695
Description: The curry functor of a functor 𝐹:𝐶 × 𝐷𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfcl.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfcl.q 𝑄 = (𝐷 FuncCat 𝐸)
curfcl.c (𝜑𝐶 ∈ Cat)
curfcl.d (𝜑𝐷 ∈ Cat)
curfcl.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
Assertion
Ref Expression
curfcl (𝜑𝐺 ∈ (𝐶 Func 𝑄))

Proof of Theorem curfcl
Dummy variables 𝑤 𝑔 𝑥 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfcl.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 eqid 2610 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 curfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfcl.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 eqid 2610 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2610 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
8 eqid 2610 . . . 4 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2610 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2610 . . . 4 (Id‘𝐷) = (Id‘𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 16686 . . 3 (𝜑𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
12 fvex 6113 . . . . . . 7 (Base‘𝐶) ∈ V
1312mptex 6390 . . . . . 6 (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1412, 12mpt2ex 7136 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) ∈ V
1513, 14op1std 7069 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
1713, 14op2ndd 7070 . . . . 5 (𝐺 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
1916, 18opeq12d 4348 . . 3 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
2011, 19eqtr4d 2647 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
21 curfcl.q . . . . 5 𝑄 = (𝐷 FuncCat 𝐸)
2221fucbas 16443 . . . 4 (𝐷 Func 𝐸) = (Base‘𝑄)
23 eqid 2610 . . . . 5 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2421, 23fuchom 16444 . . . 4 (𝐷 Nat 𝐸) = (Hom ‘𝑄)
25 eqid 2610 . . . 4 (Id‘𝑄) = (Id‘𝑄)
26 eqid 2610 . . . 4 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2610 . . . 4 (comp‘𝑄) = (comp‘𝑄)
28 funcrcl 16346 . . . . . . 7 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
295, 28syl 17 . . . . . 6 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
3029simprd 478 . . . . 5 (𝜑𝐸 ∈ Cat)
3121, 4, 30fuccat 16453 . . . 4 (𝜑𝑄 ∈ Cat)
32 opex 4859 . . . . . 6 ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V
3332a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ ∈ V)
343adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
354adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
365adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
37 simpr 476 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
38 eqid 2610 . . . . . 6 ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑥)
391, 2, 34, 35, 36, 6, 37, 38curf1cl 16691 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
4033, 16, 39fmpt2d 6300 . . . 4 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
41 eqid 2610 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
42 ovex 6577 . . . . . . 7 (𝑥(Hom ‘𝐶)𝑦) ∈ V
4342mptex 6390 . . . . . 6 (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V
4441, 43fnmpt2i 7128 . . . . 5 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))
4518fneq1d 5895 . . . . 5 (𝜑 → ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) Fn ((Base‘𝐶) × (Base‘𝐶))))
4644, 45mpbiri 247 . . . 4 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
47 fvex 6113 . . . . . . 7 (Base‘𝐷) ∈ V
4847mptex 6390 . . . . . 6 (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V
4948a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) ∈ V)
5018oveqd 6566 . . . . . 6 (𝜑 → (𝑥(2nd𝐺)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦))
5141ovmpt4g 6681 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5243, 51mp3an3 1405 . . . . . 6 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
5350, 52sylan9eq 2664 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
543ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
554ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
565ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
57 simplrl 796 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
58 simplrr 797 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
59 simpr 476 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
60 eqid 2610 . . . . . 6 ((𝑥(2nd𝐺)𝑦)‘𝑔) = ((𝑥(2nd𝐺)𝑦)‘𝑔)
611, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23curf2cl 16694 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
6249, 53, 61fmpt2d 6300 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
63 eqid 2610 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
6463, 2, 6xpcbas 16641 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
65 eqid 2610 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
66 eqid 2610 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
67 relfunc 16345 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
68 1st2ndbr 7108 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
6967, 5, 68sylancr 694 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
7069ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
71 opelxpi 5072 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7271adantll 746 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
7364, 65, 66, 70, 72funcid 16353 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)))
743ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
754ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
7637adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
77 simpr 476 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
7863, 74, 75, 2, 6, 8, 10, 65, 76, 77xpcid 16652 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
7978fveq2d 6107 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩))
80 df-ov 6552 . . . . . . . . 9 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑥), ((Id‘𝐷)‘𝑦)⟩)
8179, 80syl6eqr 2662 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑥, 𝑦⟩)) = (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)))
825ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
831, 2, 74, 75, 82, 6, 76, 38, 77curf11 16689 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) = (𝑥(1st𝐹)𝑦))
84 df-ov 6552 . . . . . . . . . 10 (𝑥(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑥, 𝑦⟩)
8583, 84syl6req 2661 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st𝐹)‘⟨𝑥, 𝑦⟩) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
8685fveq2d 6107 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((Id‘𝐸)‘((1st𝐹)‘⟨𝑥, 𝑦⟩)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8773, 81, 863eqtr3d 2652 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
8887mpteq2dva 4672 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
8930adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
90 eqid 2610 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
9190, 66cidfn 16163 . . . . . . . . 9 (𝐸 ∈ Cat → (Id‘𝐸) Fn (Base‘𝐸))
9289, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸) Fn (Base‘𝐸))
93 dffn2 5960 . . . . . . . 8 ((Id‘𝐸) Fn (Base‘𝐸) ↔ (Id‘𝐸):(Base‘𝐸)⟶V)
9492, 93sylib 207 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Id‘𝐸):(Base‘𝐸)⟶V)
95 relfunc 16345 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
96 1st2ndbr 7108 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9795, 39, 96sylancr 694 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
986, 90, 97funcf1 16349 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
99 fcompt 6306 . . . . . . 7 (((Id‘𝐸):(Base‘𝐸)⟶V ∧ (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10094, 98, 99syl2anc 691 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))) = (𝑦 ∈ (Base‘𝐷) ↦ ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑦))))
10188, 100eqtr4d 2647 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
1022, 9, 8, 34, 37catidcl 16166 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
103 eqid 2610 . . . . . 6 ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))
1041, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103curf2 16692 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑦⟩)((Id‘𝐷)‘𝑦))))
10521, 25, 66, 39fucid 16454 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑄)‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
106101, 104, 1053eqtr4d 2654 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑄)‘((1st𝐺)‘𝑥)))
10733ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
108107adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
10943ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
110109adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11153ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
112111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
113 simp21 1087 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
114113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
115 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑤 ∈ (Base‘𝐷))
1161, 2, 108, 110, 112, 6, 114, 38, 115curf11 16689 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = (𝑥(1st𝐹)𝑤))
117 df-ov 6552 . . . . . . . . . . 11 (𝑥(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩)
118116, 117syl6eq 2660 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑤) = ((1st𝐹)‘⟨𝑥, 𝑤⟩))
119 simp22 1088 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
120119adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
121 eqid 2610 . . . . . . . . . . . 12 ((1st𝐺)‘𝑦) = ((1st𝐺)‘𝑦)
1221, 2, 108, 110, 112, 6, 120, 121, 115curf11 16689 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = (𝑦(1st𝐹)𝑤))
123 df-ov 6552 . . . . . . . . . . 11 (𝑦(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩)
124122, 123syl6eq 2660 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑤) = ((1st𝐹)‘⟨𝑦, 𝑤⟩))
125118, 124opeq12d 4348 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩)
126 simp23 1089 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
127126adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐶))
128 eqid 2610 . . . . . . . . . . 11 ((1st𝐺)‘𝑧) = ((1st𝐺)‘𝑧)
1291, 2, 108, 110, 112, 6, 127, 128, 115curf11 16689 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = (𝑧(1st𝐹)𝑤))
130 df-ov 6552 . . . . . . . . . 10 (𝑧(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩)
131129, 130syl6eq 2660 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑧))‘𝑤) = ((1st𝐹)‘⟨𝑧, 𝑤⟩))
132125, 131oveq12d 6567 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩)))
133 simp3r 1083 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
134133adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
135 eqid 2610 . . . . . . . . . 10 ((𝑦(2nd𝐺)𝑧)‘𝑔) = ((𝑦(2nd𝐺)𝑧)‘𝑔)
1361, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115curf2val 16693 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
137 df-ov 6552 . . . . . . . . 9 (𝑔(⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)
138136, 137syl6eq 2660 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤) = ((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩))
139 simp3l 1082 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
140139adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2610 . . . . . . . . . 10 ((𝑥(2nd𝐺)𝑦)‘𝑓) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
1421, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115curf2val 16693 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)))
143 df-ov 6552 . . . . . . . . 9 (𝑓(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)
144142, 143syl6eq 2660 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩))
145132, 138, 144oveq123d 6570 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
146 eqid 2610 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
147 eqid 2610 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
148 eqid 2610 . . . . . . . 8 (comp‘𝐸) = (comp‘𝐸)
14967, 112, 68sylancr 694 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
150 opelxpi 5072 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
151113, 150sylan 487 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
152 opelxpi 5072 . . . . . . . . 9 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
153119, 152sylan 487 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
154 opelxpi 5072 . . . . . . . . 9 ((𝑧 ∈ (Base‘𝐶) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
155126, 154sylan 487 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑧, 𝑤⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1566, 7, 10, 110, 115catidcl 16166 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
157 opelxpi 5072 . . . . . . . . . 10 ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
158140, 156, 157syl2anc 691 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
15963, 2, 6, 9, 7, 114, 115, 120, 115, 146xpchom2 16649 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑤(Hom ‘𝐷)𝑤)))
160158, 159eleqtrrd 2691 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑥, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑤⟩))
161 opelxpi 5072 . . . . . . . . . 10 ((𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ∧ ((Id‘𝐷)‘𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
162134, 156, 161syl2anc 691 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
16363, 2, 6, 9, 7, 120, 115, 127, 115, 146xpchom2 16649 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩) = ((𝑦(Hom ‘𝐶)𝑧) × (𝑤(Hom ‘𝐷)𝑤)))
164162, 163eleqtrrd 2691 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨𝑔, ((Id‘𝐷)‘𝑤)⟩ ∈ (⟨𝑦, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩))
16564, 146, 147, 148, 149, 151, 153, 155, 160, 164funcco 16354 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = (((⟨𝑦, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨𝑔, ((Id‘𝐷)‘𝑤)⟩)(⟨((1st𝐹)‘⟨𝑥, 𝑤⟩), ((1st𝐹)‘⟨𝑦, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑧, 𝑤⟩))((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑦, 𝑤⟩)‘⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)))
166 eqid 2610 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
16763, 2, 6, 9, 7, 114, 115, 120, 115, 26, 166, 147, 127, 115, 140, 156, 134, 156xpcco2 16650 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩)
1686, 7, 10, 110, 115, 166, 115, 156catlid 16167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤)) = ((Id‘𝐷)‘𝑤))
169168opeq2d 4347 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), (((Id‘𝐷)‘𝑤)(⟨𝑤, 𝑤⟩(comp‘𝐷)𝑤)((Id‘𝐷)‘𝑤))⟩ = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
170167, 169eqtrd 2644 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → (⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩) = ⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
171170fveq2d 6107 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩))
172 df-ov 6552 . . . . . . . 8 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘⟨(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓), ((Id‘𝐷)‘𝑤)⟩)
173171, 172syl6eqr 2662 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)‘(⟨𝑔, ((Id‘𝐷)‘𝑤)⟩(⟨⟨𝑥, 𝑤⟩, ⟨𝑦, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑧, 𝑤⟩)⟨𝑓, ((Id‘𝐷)‘𝑤)⟩)) = ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)))
174145, 165, 1733eqtr2rd 2651 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) ∧ 𝑤 ∈ (Base‘𝐷)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤)) = ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤)))
175174mpteq2dva 4672 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
1762, 9, 26, 107, 113, 119, 126, 139, 133catcocl 16169 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
177 eqid 2610 . . . . . 6 ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
1781, 2, 107, 109, 111, 6, 9, 10, 113, 126, 176, 177curf2 16692 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)(⟨𝑥, 𝑤⟩(2nd𝐹)⟨𝑧, 𝑤⟩)((Id‘𝐷)‘𝑤))))
1791, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23curf2cl 16694 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
1801, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23curf2cl 16694 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑔) ∈ (((1st𝐺)‘𝑦)(𝐷 Nat 𝐸)((1st𝐺)‘𝑧)))
18121, 23, 6, 148, 27, 179, 180fucco 16445 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)) = (𝑤 ∈ (Base‘𝐷) ↦ ((((𝑦(2nd𝐺)𝑧)‘𝑔)‘𝑤)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑤), ((1st ‘((1st𝐺)‘𝑦))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑧))‘𝑤))(((𝑥(2nd𝐺)𝑦)‘𝑓)‘𝑤))))
182175, 178, 1813eqtr4d 2654 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐺)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑔)(⟨((1st𝐺)‘𝑥), ((1st𝐺)‘𝑦)⟩(comp‘𝑄)((1st𝐺)‘𝑧))((𝑥(2nd𝐺)𝑦)‘𝑓)))
1832, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 182isfuncd 16348 . . 3 (𝜑 → (1st𝐺)(𝐶 Func 𝑄)(2nd𝐺))
184 df-br 4584 . . 3 ((1st𝐺)(𝐶 Func 𝑄)(2nd𝐺) ↔ ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
185183, 184sylib 207 . 2 (𝜑 → ⟨(1st𝐺), (2nd𝐺)⟩ ∈ (𝐶 Func 𝑄))
18620, 185eqeltrd 2688 1 (𝜑𝐺 ∈ (𝐶 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ccom 5042  Rel wrel 5043   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149   Func cfunc 16337   Nat cnat 16424   FuncCat cfuc 16425   ×c cxpc 16631   curryF ccurf 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-func 16341  df-nat 16426  df-fuc 16427  df-xpc 16635  df-curf 16677
This theorem is referenced by:  uncfcurf  16702  diagcl  16704  curf2ndf  16710  yoncl  16725
  Copyright terms: Public domain W3C validator