Step | Hyp | Ref
| Expression |
1 | | coafval.o |
. 2
⊢ · =
(compa‘𝐶) |
2 | | fveq2 6103 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶)) |
3 | | coafval.a |
. . . . . 6
⊢ 𝐴 = (Arrow‘𝐶) |
4 | 2, 3 | syl6eqr 2662 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴) |
5 | 4 | rabeqdv 3167 |
. . . . 5
⊢ (𝑐 = 𝐶 → {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} = {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) |
6 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶)) |
7 | | coafval.x |
. . . . . . . . 9
⊢ ∙ =
(comp‘𝐶) |
8 | 6, 7 | syl6eqr 2662 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = ∙ ) |
9 | 8 | oveqd 6566 |
. . . . . . 7
⊢ (𝑐 = 𝐶 →
(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔)) =
(〈(doma‘𝑓), (doma‘𝑔)〉 ∙
(coda‘𝑔))) |
10 | 9 | oveqd 6566 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓)) = ((2nd
‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))) |
11 | 10 | oteq3d 4354 |
. . . . 5
⊢ (𝑐 = 𝐶 →
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉 =
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
12 | 4, 5, 11 | mpt2eq123dv 6615 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
13 | | df-coa 16529 |
. . . 4
⊢
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |
14 | | fvex 6113 |
. . . . . 6
⊢
(Arrow‘𝐶)
∈ V |
15 | 3, 14 | eqeltri 2684 |
. . . . 5
⊢ 𝐴 ∈ V |
16 | 15 | rabex 4740 |
. . . . 5
⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ∈ V |
17 | 15, 16 | mpt2ex 7136 |
. . . 4
⊢ (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) ∈ V |
18 | 12, 13, 17 | fvmpt 6191 |
. . 3
⊢ (𝐶 ∈ Cat →
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
19 | 13 | dmmptss 5548 |
. . . . . . 7
⊢ dom
compa ⊆ Cat |
20 | 19 | sseli 3564 |
. . . . . 6
⊢ (𝐶 ∈ dom
compa → 𝐶 ∈ Cat) |
21 | 20 | con3i 149 |
. . . . 5
⊢ (¬
𝐶 ∈ Cat → ¬
𝐶 ∈ dom
compa) |
22 | | ndmfv 6128 |
. . . . 5
⊢ (¬
𝐶 ∈ dom
compa → (compa‘𝐶) = ∅) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (¬
𝐶 ∈ Cat →
(compa‘𝐶) = ∅) |
24 | 3 | arwrcl 16517 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐴 → 𝐶 ∈ Cat) |
25 | 24 | con3i 149 |
. . . . . . 7
⊢ (¬
𝐶 ∈ Cat → ¬
𝑓 ∈ 𝐴) |
26 | 25 | eq0rdv 3931 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat → 𝐴 = ∅) |
27 | | eqidd 2611 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat → {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} = {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) |
28 | | eqidd 2611 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat →
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉 =
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
29 | 26, 27, 28 | mpt2eq123dv 6615 |
. . . . 5
⊢ (¬
𝐶 ∈ Cat → (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = (𝑔 ∈ ∅, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
30 | | mpt20 6623 |
. . . . 5
⊢ (𝑔 ∈ ∅, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = ∅ |
31 | 29, 30 | syl6eq 2660 |
. . . 4
⊢ (¬
𝐶 ∈ Cat → (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = ∅) |
32 | 23, 31 | eqtr4d 2647 |
. . 3
⊢ (¬
𝐶 ∈ Cat →
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
33 | 18, 32 | pm2.61i 175 |
. 2
⊢
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
34 | 1, 33 | eqtri 2632 |
1
⊢ · =
(𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |