Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarw Structured version   Visualization version   GIF version

Theorem homarw 16519
 Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarw (𝑋𝐻𝑌) ⊆ 𝐴

Proof of Theorem homarw
StepHypRef Expression
1 ovssunirn 6579 . 2 (𝑋𝐻𝑌) ⊆ ran 𝐻
2 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
3 arwhoma.h . . 3 𝐻 = (Homa𝐶)
42, 3arwval 16516 . 2 𝐴 = ran 𝐻
51, 4sseqtr4i 3601 1 (𝑋𝐻𝑌) ⊆ 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ⊆ wss 3540  ∪ cuni 4372  ran crn 5039  ‘cfv 5804  (class class class)co 6549  Arrowcarw 16495  Homachoma 16496 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-homa 16499  df-arw 16500 This theorem is referenced by:  idaf  16536  homdmcoa  16540  coaval  16541  coapm  16544
 Copyright terms: Public domain W3C validator