Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homdmcoa | Structured version Visualization version GIF version |
Description: If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
homdmcoa | ⊢ (𝜑 → 𝐺dom · 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Arrow‘𝐶) = (Arrow‘𝐶) | |
2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | homarw 16519 | . . 3 ⊢ (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶) |
4 | homdmcoa.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
5 | 3, 4 | sseldi 3566 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Arrow‘𝐶)) |
6 | 1, 2 | homarw 16519 | . . 3 ⊢ (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶) |
7 | homdmcoa.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
8 | 6, 7 | sseldi 3566 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Arrow‘𝐶)) |
9 | 2 | homacd 16514 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → (coda‘𝐹) = 𝑌) |
11 | 2 | homadm 16513 | . . . 4 ⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (doma‘𝐺) = 𝑌) |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (doma‘𝐺) = 𝑌) |
13 | 10, 12 | eqtr4d 2647 | . 2 ⊢ (𝜑 → (coda‘𝐹) = (doma‘𝐺)) |
14 | homdmcoa.o | . . 3 ⊢ · = (compa‘𝐶) | |
15 | 14, 1 | eldmcoa 16538 | . 2 ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ (Arrow‘𝐶) ∧ 𝐺 ∈ (Arrow‘𝐶) ∧ (coda‘𝐹) = (doma‘𝐺))) |
16 | 5, 8, 13, 15 | syl3anbrc 1239 | 1 ⊢ (𝜑 → 𝐺dom · 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 domacdoma 16493 codaccoda 16494 Arrowcarw 16495 Homachoma 16496 compaccoa 16527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-ot 4134 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-doma 16497 df-coda 16498 df-homa 16499 df-arw 16500 df-coa 16529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |