MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphtr Structured version   Visualization version   GIF version

Theorem hmphtr 21396
Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphtr ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)

Proof of Theorem hmphtr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 21389 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 hmph 21389 . 2 (𝐾𝐿 ↔ (𝐾Homeo𝐿) ≠ ∅)
3 n0 3890 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
4 n0 3890 . . 3 ((𝐾Homeo𝐿) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿))
5 eeanv 2170 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) ↔ (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)))
6 hmeoco 21385 . . . . . 6 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → (𝑔𝑓) ∈ (𝐽Homeo𝐿))
7 hmphi 21390 . . . . . 6 ((𝑔𝑓) ∈ (𝐽Homeo𝐿) → 𝐽𝐿)
86, 7syl 17 . . . . 5 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
98exlimivv 1847 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
105, 9sylbir 224 . . 3 ((∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) ∧ ∃𝑔 𝑔 ∈ (𝐾Homeo𝐿)) → 𝐽𝐿)
113, 4, 10syl2anb 495 . 2 (((𝐽Homeo𝐾) ≠ ∅ ∧ (𝐾Homeo𝐿) ≠ ∅) → 𝐽𝐿)
121, 2, 11syl2anb 495 1 ((𝐽𝐾𝐾𝐿) → 𝐽𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1695  wcel 1977  wne 2780  c0 3874   class class class wbr 4583  ccom 5042  (class class class)co 6549  Homeochmeo 21366  chmph 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841  df-hmeo 21368  df-hmph 21369
This theorem is referenced by:  hmpher  21397  xrhmph  22554
  Copyright terms: Public domain W3C validator