MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 21397
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 21369 . . . . . 6 ≃ = (Homeo “ (V ∖ 1𝑜))
2 cnvimass 5404 . . . . . . 7 (Homeo “ (V ∖ 1𝑜)) ⊆ dom Homeo
3 hmeofn 21370 . . . . . . . 8 Homeo Fn (Top × Top)
4 fndm 5904 . . . . . . . 8 (Homeo Fn (Top × Top) → dom Homeo = (Top × Top))
53, 4ax-mp 5 . . . . . . 7 dom Homeo = (Top × Top)
62, 5sseqtri 3600 . . . . . 6 (Homeo “ (V ∖ 1𝑜)) ⊆ (Top × Top)
71, 6eqsstri 3598 . . . . 5 ≃ ⊆ (Top × Top)
8 relxp 5150 . . . . 5 Rel (Top × Top)
9 relss 5129 . . . . 5 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
107, 8, 9mp2 9 . . . 4 Rel ≃
1110a1i 11 . . 3 (⊤ → Rel ≃ )
12 hmphsym 21395 . . . 4 (𝑥𝑦𝑦𝑥)
1312adantl 481 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
14 hmphtr 21396 . . . 4 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1514adantl 481 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
16 hmphref 21394 . . . . 5 (𝑥 ∈ Top → 𝑥𝑥)
17 hmphtop1 21392 . . . . 5 (𝑥𝑥𝑥 ∈ Top)
1816, 17impbii 198 . . . 4 (𝑥 ∈ Top ↔ 𝑥𝑥)
1918a1i 11 . . 3 (⊤ → (𝑥 ∈ Top ↔ 𝑥𝑥))
2011, 13, 15, 19iserd 7655 . 2 (⊤ → ≃ Er Top)
2120trud 1484 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173  cdif 3537  wss 3540   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  Rel wrel 5043   Fn wfn 5799  1𝑜c1o 7440   Er wer 7626  Topctop 20517  Homeochmeo 21366  chmph 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-er 7629  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841  df-hmeo 21368  df-hmph 21369
This theorem is referenced by:  ismntop  29398
  Copyright terms: Public domain W3C validator