MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactcnv Structured version   Visualization version   GIF version

Theorem grplactcnv 17341
Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
grplact.3 + = (+g𝐺)
grplactcnv.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
grplactcnv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   𝐼,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactcnv
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
2 grplact.2 . . . . 5 𝑋 = (Base‘𝐺)
3 grplact.3 . . . . 5 + = (+g𝐺)
42, 3grpcl 17253 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
543expa 1257 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
6 simpl 472 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
7 grplactcnv.4 . . . . . 6 𝐼 = (invg𝐺)
82, 7grpinvcl 17290 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
96, 8jca 553 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋))
102, 3grpcl 17253 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
11103expa 1257 . . . 4 (((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
129, 11sylan 487 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
13 eqcom 2617 . . . . 5 (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = 𝑎)
14 eqid 2610 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
152, 3, 14, 7grplinv 17291 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1615adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1716oveq1d 6564 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((0g𝐺) + 𝑎))
18 simpll 786 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐺 ∈ Grp)
198adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐼𝐴) ∈ 𝑋)
20 simplr 788 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐴𝑋)
21 simprl 790 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
222, 3grpass 17254 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((𝐼𝐴) ∈ 𝑋𝐴𝑋𝑎𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
2318, 19, 20, 21, 22syl13anc 1320 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
242, 3, 14grplid 17275 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((0g𝐺) + 𝑎) = 𝑎)
2524ad2ant2r 779 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((0g𝐺) + 𝑎) = 𝑎)
2617, 23, 253eqtr3rd 2653 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 = ((𝐼𝐴) + (𝐴 + 𝑎)))
2726eqeq2d 2620 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = 𝑎 ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
2813, 27syl5bb 271 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
29 simprr 792 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
305adantrr 749 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐴 + 𝑎) ∈ 𝑋)
312, 3grplcan 17300 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝐴 + 𝑎) ∈ 𝑋 ∧ (𝐼𝐴) ∈ 𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3218, 29, 30, 19, 31syl13anc 1320 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3328, 32bitrd 267 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ 𝑏 = (𝐴 + 𝑎)))
341, 5, 12, 33f1ocnv2d 6784 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
35 grplact.1 . . . . . 6 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
3635, 2grplactfval 17339 . . . . 5 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3736adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
38 f1oeq1 6040 . . . 4 ((𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)) → ((𝐹𝐴):𝑋1-1-onto𝑋 ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋))
3937, 38syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋 ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋))
4037cnveqd 5220 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
4135, 2grplactfval 17339 . . . . . 6 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)))
42 oveq2 6557 . . . . . . 7 (𝑎 = 𝑏 → ((𝐼𝐴) + 𝑎) = ((𝐼𝐴) + 𝑏))
4342cbvmptv 4678 . . . . . 6 (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))
4441, 43syl6eq 2660 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
458, 44syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
4640, 45eqeq12d 2625 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴) = (𝐹‘(𝐼𝐴)) ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
4739, 46anbi12d 743 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))) ↔ ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))))
4834, 47mpbird 246 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cmpt 4643  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  grplactf1o  17342  eqglact  17468  tgplacthmeo  21717  tgpconcompeqg  21725
  Copyright terms: Public domain W3C validator